FeCl3改性活性炭脱硫性能研究

胡谦, 刘然, 赵俊, 吕庆. FeCl3改性活性炭脱硫性能研究[J]. 矿产综合利用, 2024, 45(1): 167-173. doi: 10.3969/j.issn.1000-6532.2024.01.022
引用本文: 胡谦, 刘然, 赵俊, 吕庆. FeCl3改性活性炭脱硫性能研究[J]. 矿产综合利用, 2024, 45(1): 167-173. doi: 10.3969/j.issn.1000-6532.2024.01.022
HU Qian, LIU Ran, ZHAO Jun, LYU Qing. Study on Desulfurization Performance of FeCl3 Modified Activated Carbon[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 167-173. doi: 10.3969/j.issn.1000-6532.2024.01.022
Citation: HU Qian, LIU Ran, ZHAO Jun, LYU Qing. Study on Desulfurization Performance of FeCl3 Modified Activated Carbon[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 167-173. doi: 10.3969/j.issn.1000-6532.2024.01.022

FeCl3改性活性炭脱硫性能研究

  • 基金项目: 国家自然科学基金项目(51674122);河北省自然科学基金高端钢铁冶金联合基金项目(E2020209208)
详细信息
    作者简介: 胡谦(1998-),女,硕士生,研究方向为钢铁冶金
    通讯作者: 刘然(1979-),男,博士,教授,研究方向为钢铁冶金
  • 中图分类号: TD989

Study on Desulfurization Performance of FeCl3 Modified Activated Carbon

More Information
  • 这是一篇环境工程领域的论文。实验采用浸渍法,以FeCl3作为改性剂对活性炭进行改性,研究其脱硫能力。实验研究了改性剂浓度、焙烧温度、反应温度对改性活性炭脱硫性能的影响。研究表明,随着改性溶液浓度的增加,活性炭表面附着的Fe2O3随之增加,改性活性炭的比表面积和总孔容均降低,平均孔径增加;随着焙烧温度升高,活性炭表面附着的Fe2O3数量持续增加,焙烧温度超过300 ℃时,活性炭表面的孔隙结构出现烧结现象,降低改性活性炭的脱硫性能;随着反应温度升高,FeCl3/AC-0.15的吸附性能先升高再降低。当FeCl3改性溶液浓度为0.15 mol/L,焙烧温度300 ℃,反应温度为60 ℃时,改性活性炭的脱硫效率最高。

  • 加载中
  • 图 1  改性后各吸附剂比表面积、总孔容及平均孔径的变化

    Figure 1. 

    图 2  FeCl3溶液改性前后活性炭的XRD

    Figure 2. 

    图 3  FeCl3/AC的SEM

    Figure 3. 

    图 4  改性溶液浓度对活性炭脱硫性能的影响

    Figure 4. 

    图 5  活性炭的硫容和穿透时间

    Figure 5. 

    图 6  焙烧温度对活性炭脱硫性能的影响

    Figure 6. 

    图 7  活性炭的硫容和穿透时间

    Figure 7. 

    图 8  反应温度对活性炭脱硫性能的影响

    Figure 8. 

    图 9  穿透时间对活性炭硫容的影响

    Figure 9. 

  • [1]

    杨光, 张淑会, 杨艳双. 烧结烟气中气态污染物的减排技术现状及展望[J]. 矿产综合利用, 2021(1):45-56. YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1):45-56.

    YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 45-56.

    [2]

    汤铃, 薛晓达, 伯鑫, 等. 中国钢铁行业大气环境影响[J]. 环境科学, 2020, 41(7):2981-2994. TANG L, XUE X D, BO X, et al. The atmospheric environmental impact of China's iron and steel industry[J]. Environmental Science, 2020, 41(7):2981-2994.

    TANG L, XUE X D, BO X, et al. The atmospheric environmental impact of China's iron and steel industry[J]. Environmental Science, 2020, 41(7): 2981-2994.

    [3]

    王伟, 宋静, 刘璐琦, 等. 烧结烟气脱硫脱硝技术探讨[J]. 节能与环保, 2020(8):58-60. WANG W, SONG J, LIU L Q, et al. Discussion on sintering flue gas desulfurization and denitration technology[J]. Energy Conservation and Environmental Protection, 2020(8):58-60.

    WANG W, SONG J, LIU L Q, et al. Discussion on sintering flue gas desulfurization and denitration technology [J]. Energy Conservation and Environmental Protection, 2020(8): 58-60.

    [4]

    刘征建, 张建良, 杨天钧. 烧结烟气脱硫技术的研究与发展[J]. 中国冶金, 2009, 19(2):1-5+9. LIU Z J, ZHANG J L, YANG T J. Research and development of sintering flue gas desulfurization technology[J]. China Metallurgy, 2009, 19(2):1-5+9.

    LIU Z J, ZHANG J L, YANG T J. Research and development of sintering flue gas desulfurization technology[J]. China Metallurgy, 2009, 19(2): 1-5+9.

    [5]

    左海滨, 张涛, 张建良, 等. 活性炭脱硫技术在烧结烟气脱硫中的应用[J]. 冶金能源, 2012, 31(3):56-59. ZUO H B, ZHANG T, ZHANG J L, et al. Application of activated carbon desulfurization technology in sintering flue gas desulfurization[J]. Energy for Metallurgical Industry, 2012, 31(3):56-59.

    ZUO H B, ZHANG T, ZHANG J L, et al. Application of activated carbon desulfurization technology in sintering flue gas desulfurization[J]. Energy for Metallurgical Industry, 2012, 31(3): 56-59.

    [6]

    鲁健. 烧结烟气特点及处理技术的发展趋势[J]. 内蒙古科技大学学报, 2012, 31(3):227-230. LU J. The characteristics of sintering flue gas and the development trend of treatment technology[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3):227-230.

    LU J. The characteristics of sintering flue gas and the development trend of treatment technology[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3): 227-230.

    [7]

    高洪亮, 周劲松, 骆仲泱, 等. 改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J]. 中国电机工程学报, 2007(8):26-30. GAO H L, ZHOU J S, LUO Z Y, et al. Experimental study on the adsorption of mercury in simulated coal-fired flue gas by modified activated carbon[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(8):26-30.

    GAO H L, ZHOU J S, LUO Z Y, et al. Experimental study on the adsorption of mercury in simulated coal-fired flue gas by modified activated carbon[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(8): 26-30.

    [8]

    段东平. 活性炭的再生及改性进展研究[J]. 环境与发展, 2019, 31(6):78-79. DUAN D P. Research on the regeneration and modification of activated carbon[J]. Environment and Development, 2019, 31(6):78-79.

    DUAN D P. Research on the regeneration and modification of activated carbon[J]. Environment and Development, 2019, 31(6): 78-79.

    [9]

    韩严和, 全燮, 薛大明, 等. 活性炭改性研究进展[J]. 环境污染治理技术与设备, 2003(1):33-37. HAN Y H, QUAN X, XUE D M, et al. Research progress of activated carbon modification[J]. Environmental Pollution Control Technology and Equipment, 2003(1):33-37.

    HAN Y H, QUAN X, XUE D M, et al. Research progress of activated carbon modification [J]. Environmental pollution control technology and equipment, 2003 (1): 33-37.

    [10]

    董宇. 活性炭的吸附性能及表征方法[J]. 中国资源综合利用, 2020, 38(7):64-66. DONG Y. The adsorption performance and characterization method of activated carbon[J]. Comprehensive Utilization of Resources in China, 2020, 38(7):64-66.

    DONG Y. The adsorption performance and characterization method of activated carbon[J]. Comprehensive Utilization of Resources in China, 2020, 38(7): 64-66.

    [11]

    龙小燕. 活性炭负载Fe/Ti改性及去除水体砷的效果和机理研究[D]. 武汉: 华中农业大学, 2012.

    LONG X Y. Study on the effect and mechanism of Fe/Ti modification by activated carbon loading and arsenic removal from water[D]. Wuhan: Huazhong Agricultural University, 2012.

    [12]

    Lu F, Jie C, Jia X G, et al. Influence of manganese, iron and pyrolusite blending on the physiochemical properties and desulfurization activities of activated carbons from walnut shell[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104:353-360. doi: 10.1016/j.jaap.2013.06.014

    [13]

    尹寿来, 朱宝忠, 孙运兰, 等. Fe2O3/AC催化剂的低温选择性催化还原脱硝性能[J]. 过程工程学报, 2018, 18(2):330-336. YIN S L, ZHU B Z, SUN Y L, et al. Low-temperature selective catalytic reduction denitrification performance of Fe2O3/AC catalyst[J]. The Chinese Journal of Process Engineering, 2018, 18(2):330-336. doi: 10.12034/j.issn.1009-606X.217251

    YIN S L, ZHU B Z, SUN Y L, et al. Low-temperature selective catalytic reduction denitrification performance of Fe2O3/AC catalyst[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 330-336. doi: 10.12034/j.issn.1009-606X.217251

    [14]

    方惠斌, 赵建涛, 王胜, 等. Fe-K/AC催化氧化脱硫剂制备及反应机理研究[J]. 燃料化学学报, 2012, 40(1):105-110. FANG H B, ZHAO J T, WANG S, et al. Preparation and reaction mechanism of Fe-K/AC catalytic oxidation desulfurizer[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1):105-110.

    FANG H B, ZHAO J T, WANG S, et al. Preparation and reaction mechanism of Fe-K/AC catalytic oxidation desulfurizer[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 105-110.

    [15]

    宋华, 王璐, 张娇静, 等. 氧化铁改性活性炭的制备及其吸附脱硫性能[J]. 化工进展, 2013, 32(3):639-644+651. SONG H, WANG L, ZHANG J J, et al. Preparation of iron oxide modified activated carbon and its adsorption and desulfurization performance[J]. Chemical Industry Progress, 2013, 32(3):639-644+651.

    SONG H, WANG L, ZHANG J J, et al. Preparation of iron oxide modified activated carbon and its adsorption and desulfurization performance [J]. Chemical Industry Progress, 2013, 32(3): 639-644+651.

    [16]

    李广柱, 曾尚景, 孙述海, 等. 生物炭负载铁氧化物复合材料的制备及在水处理中的应用[J]. 化工进展, 2021, 40(2):917-931. LI G Z, ZENG S J, SUN S H, et al. Preparation of biochar-supported iron oxide composite material and its application in water treatment[J]. Chemical Industry Progress, 2021, 40(2):917-931.

    LI G Z, ZENG S J, SUN S H, et al. Preparation of biochar-supported iron oxide composite material and its application in water treatment[J]. Chemical Industry Progress, 2021, 40(2): 917-931.

    [17]

    张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/Al2O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016, 36(10):3003-3009. ZHANG Y H, TU Y, TANG M, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalyst for ozonation[J]. China Environmental Science, 2016, 36(10):3003-3009.

    ZHANG Y H, TU Y, TANG M, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalyst for ozonation[J]. China Environmental Science, 2016, 36(10): 3003-3009.

    [18]

    雷利荣, 党中煦, 李友明. 活性炭负载Fe2O3催化臭氧降解丁香酚[J]. 华南理工大学学报(自然科学版), 2018, 46(10):132-140. LEI L R, DANG Z X, LI Y M. Activated carbon supported Fe2O3 catalytic ozone degradation of eugenol[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10):132-140.

    LEI L R, DANG Z X, LI Y M. Activated carbon supported Fe2O3 catalytic ozone degradation of eugenol[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10): 132-140.

    [19]

    张武英, 黄碧纯, 周广英, 等. 低温等离子体改性对Fe2O3/ACF低温选择性催化还原NO的影响[J]. 环境科学学报, 2009, 29(10):2025-2032. ZHANG W Y, HUANG B C, ZHOU G Y, et al. Effect of low-temperature plasma modification on Fe2O3/ACF low-temperature selective catalytic reduction of NO[J]. Acta Scientiae Circumstantiae, 2009, 29(10):2025-2032.

    ZHANG W Y, HUANG B C, ZHOU G Y, et al. Effect of low-temperature plasma modification on Fe2O3/ACF low-temperature selective catalytic reduction of NO[J]. Acta Scientiae Circumstantiae, 2009, 29(10): 2025-2032.

  • 加载中

(9)

计量
  • 文章访问数:  654
  • PDF下载数:  120
  • 施引文献:  0
出版历程
收稿日期:  2021-04-26
刊出日期:  2024-02-25

目录