-
摘要:
这是一篇环境工程领域的论文。实验采用浸渍法,以FeCl3作为改性剂对活性炭进行改性,研究其脱硫能力。实验研究了改性剂浓度、焙烧温度、反应温度对改性活性炭脱硫性能的影响。研究表明,随着改性溶液浓度的增加,活性炭表面附着的Fe2O3随之增加,改性活性炭的比表面积和总孔容均降低,平均孔径增加;随着焙烧温度升高,活性炭表面附着的Fe2O3数量持续增加,焙烧温度超过300 ℃时,活性炭表面的孔隙结构出现烧结现象,降低改性活性炭的脱硫性能;随着反应温度升高,FeCl3/AC-0.15的吸附性能先升高再降低。当FeCl3改性溶液浓度为0.15 mol/L,焙烧温度300 ℃,反应温度为60 ℃时,改性活性炭的脱硫效率最高。
Abstract:This is an essay in the field of environmental engineering. The experiment adopts the impregnation method, and uses FeCl3 as the modifier to modify the activated carbon to study its desulfurization ability. The effects of modifier concentration, roasting temperature, and reaction temperature on the desulfurization performance of modified activated carbon were experimentally studied. Studies have shown that as the concentration of the modified solution increases, the Fe2O3 attached to the surface of the activated carbon increases, the specific surface area and total pore volume of the modified activated carbon decrease, and the average pore size increases; as the roasting temperature increases, the amount of Fe2O3 attached to the surface of the activated carbon continues. When the roasting temperature exceeds 300 ℃, the pore structure of the activated carbon surface will be sintered, which will reduce the desulfurization performance of the modified activated carbon; as the reaction temperature increases, the adsorption performance of FeCl3/AC-0.15 first increases and then decreases. When the concentration of FeCl3 modified solution is 0.15 mol/L, the calcination temperature is 300 ℃, and the reaction temperature is 60 ℃, the desulfurization efficiency of modified activated carbon is the highest.
-
Key words:
- Environmental engineering /
- Activated carbon /
- Modified /
- Desulfurization /
- Impregnation method
-
[1] 杨光, 张淑会, 杨艳双. 烧结烟气中气态污染物的减排技术现状及展望[J]. 矿产综合利用, 2021(1):45-56. YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1):45-56.
YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 45-56.
[2] 汤铃, 薛晓达, 伯鑫, 等. 中国钢铁行业大气环境影响[J]. 环境科学, 2020, 41(7):2981-2994. TANG L, XUE X D, BO X, et al. The atmospheric environmental impact of China's iron and steel industry[J]. Environmental Science, 2020, 41(7):2981-2994.
TANG L, XUE X D, BO X, et al. The atmospheric environmental impact of China's iron and steel industry[J]. Environmental Science, 2020, 41(7): 2981-2994.
[3] 王伟, 宋静, 刘璐琦, 等. 烧结烟气脱硫脱硝技术探讨[J]. 节能与环保, 2020(8):58-60. WANG W, SONG J, LIU L Q, et al. Discussion on sintering flue gas desulfurization and denitration technology[J]. Energy Conservation and Environmental Protection, 2020(8):58-60.
WANG W, SONG J, LIU L Q, et al. Discussion on sintering flue gas desulfurization and denitration technology [J]. Energy Conservation and Environmental Protection, 2020(8): 58-60.
[4] 刘征建, 张建良, 杨天钧. 烧结烟气脱硫技术的研究与发展[J]. 中国冶金, 2009, 19(2):1-5+9. LIU Z J, ZHANG J L, YANG T J. Research and development of sintering flue gas desulfurization technology[J]. China Metallurgy, 2009, 19(2):1-5+9.
LIU Z J, ZHANG J L, YANG T J. Research and development of sintering flue gas desulfurization technology[J]. China Metallurgy, 2009, 19(2): 1-5+9.
[5] 左海滨, 张涛, 张建良, 等. 活性炭脱硫技术在烧结烟气脱硫中的应用[J]. 冶金能源, 2012, 31(3):56-59. ZUO H B, ZHANG T, ZHANG J L, et al. Application of activated carbon desulfurization technology in sintering flue gas desulfurization[J]. Energy for Metallurgical Industry, 2012, 31(3):56-59.
ZUO H B, ZHANG T, ZHANG J L, et al. Application of activated carbon desulfurization technology in sintering flue gas desulfurization[J]. Energy for Metallurgical Industry, 2012, 31(3): 56-59.
[6] 鲁健. 烧结烟气特点及处理技术的发展趋势[J]. 内蒙古科技大学学报, 2012, 31(3):227-230. LU J. The characteristics of sintering flue gas and the development trend of treatment technology[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3):227-230.
LU J. The characteristics of sintering flue gas and the development trend of treatment technology[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3): 227-230.
[7] 高洪亮, 周劲松, 骆仲泱, 等. 改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J]. 中国电机工程学报, 2007(8):26-30. GAO H L, ZHOU J S, LUO Z Y, et al. Experimental study on the adsorption of mercury in simulated coal-fired flue gas by modified activated carbon[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(8):26-30.
GAO H L, ZHOU J S, LUO Z Y, et al. Experimental study on the adsorption of mercury in simulated coal-fired flue gas by modified activated carbon[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(8): 26-30.
[8] 段东平. 活性炭的再生及改性进展研究[J]. 环境与发展, 2019, 31(6):78-79. DUAN D P. Research on the regeneration and modification of activated carbon[J]. Environment and Development, 2019, 31(6):78-79.
DUAN D P. Research on the regeneration and modification of activated carbon[J]. Environment and Development, 2019, 31(6): 78-79.
[9] 韩严和, 全燮, 薛大明, 等. 活性炭改性研究进展[J]. 环境污染治理技术与设备, 2003(1):33-37. HAN Y H, QUAN X, XUE D M, et al. Research progress of activated carbon modification[J]. Environmental Pollution Control Technology and Equipment, 2003(1):33-37.
HAN Y H, QUAN X, XUE D M, et al. Research progress of activated carbon modification [J]. Environmental pollution control technology and equipment, 2003 (1): 33-37.
[10] 董宇. 活性炭的吸附性能及表征方法[J]. 中国资源综合利用, 2020, 38(7):64-66. DONG Y. The adsorption performance and characterization method of activated carbon[J]. Comprehensive Utilization of Resources in China, 2020, 38(7):64-66.
DONG Y. The adsorption performance and characterization method of activated carbon[J]. Comprehensive Utilization of Resources in China, 2020, 38(7): 64-66.
[11] 龙小燕. 活性炭负载Fe/Ti改性及去除水体砷的效果和机理研究[D]. 武汉: 华中农业大学, 2012.
LONG X Y. Study on the effect and mechanism of Fe/Ti modification by activated carbon loading and arsenic removal from water[D]. Wuhan: Huazhong Agricultural University, 2012.
[12] Lu F, Jie C, Jia X G, et al. Influence of manganese, iron and pyrolusite blending on the physiochemical properties and desulfurization activities of activated carbons from walnut shell[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104:353-360. doi: 10.1016/j.jaap.2013.06.014
[13] 尹寿来, 朱宝忠, 孙运兰, 等. Fe2O3/AC催化剂的低温选择性催化还原脱硝性能[J]. 过程工程学报, 2018, 18(2):330-336. YIN S L, ZHU B Z, SUN Y L, et al. Low-temperature selective catalytic reduction denitrification performance of Fe2O3/AC catalyst[J]. The Chinese Journal of Process Engineering, 2018, 18(2):330-336. doi: 10.12034/j.issn.1009-606X.217251
YIN S L, ZHU B Z, SUN Y L, et al. Low-temperature selective catalytic reduction denitrification performance of Fe2O3/AC catalyst[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 330-336. doi: 10.12034/j.issn.1009-606X.217251
[14] 方惠斌, 赵建涛, 王胜, 等. Fe-K/AC催化氧化脱硫剂制备及反应机理研究[J]. 燃料化学学报, 2012, 40(1):105-110. FANG H B, ZHAO J T, WANG S, et al. Preparation and reaction mechanism of Fe-K/AC catalytic oxidation desulfurizer[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1):105-110.
FANG H B, ZHAO J T, WANG S, et al. Preparation and reaction mechanism of Fe-K/AC catalytic oxidation desulfurizer[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 105-110.
[15] 宋华, 王璐, 张娇静, 等. 氧化铁改性活性炭的制备及其吸附脱硫性能[J]. 化工进展, 2013, 32(3):639-644+651. SONG H, WANG L, ZHANG J J, et al. Preparation of iron oxide modified activated carbon and its adsorption and desulfurization performance[J]. Chemical Industry Progress, 2013, 32(3):639-644+651.
SONG H, WANG L, ZHANG J J, et al. Preparation of iron oxide modified activated carbon and its adsorption and desulfurization performance [J]. Chemical Industry Progress, 2013, 32(3): 639-644+651.
[16] 李广柱, 曾尚景, 孙述海, 等. 生物炭负载铁氧化物复合材料的制备及在水处理中的应用[J]. 化工进展, 2021, 40(2):917-931. LI G Z, ZENG S J, SUN S H, et al. Preparation of biochar-supported iron oxide composite material and its application in water treatment[J]. Chemical Industry Progress, 2021, 40(2):917-931.
LI G Z, ZENG S J, SUN S H, et al. Preparation of biochar-supported iron oxide composite material and its application in water treatment[J]. Chemical Industry Progress, 2021, 40(2): 917-931.
[17] 张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/Al2O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016, 36(10):3003-3009. ZHANG Y H, TU Y, TANG M, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalyst for ozonation[J]. China Environmental Science, 2016, 36(10):3003-3009.
ZHANG Y H, TU Y, TANG M, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalyst for ozonation[J]. China Environmental Science, 2016, 36(10): 3003-3009.
[18] 雷利荣, 党中煦, 李友明. 活性炭负载Fe2O3催化臭氧降解丁香酚[J]. 华南理工大学学报(自然科学版), 2018, 46(10):132-140. LEI L R, DANG Z X, LI Y M. Activated carbon supported Fe2O3 catalytic ozone degradation of eugenol[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10):132-140.
LEI L R, DANG Z X, LI Y M. Activated carbon supported Fe2O3 catalytic ozone degradation of eugenol[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10): 132-140.
[19] 张武英, 黄碧纯, 周广英, 等. 低温等离子体改性对Fe2O3/ACF低温选择性催化还原NO的影响[J]. 环境科学学报, 2009, 29(10):2025-2032. ZHANG W Y, HUANG B C, ZHOU G Y, et al. Effect of low-temperature plasma modification on Fe2O3/ACF low-temperature selective catalytic reduction of NO[J]. Acta Scientiae Circumstantiae, 2009, 29(10):2025-2032.
ZHANG W Y, HUANG B C, ZHOU G Y, et al. Effect of low-temperature plasma modification on Fe2O3/ACF low-temperature selective catalytic reduction of NO[J]. Acta Scientiae Circumstantiae, 2009, 29(10): 2025-2032.