-
摘要:
这是一篇矿物加工工程领域的论文。根据机械力化学原理,采用振动磨的方式对水淬硅锰渣进行粉磨,通过研究粉磨时间对水淬硅锰渣粉比表面积、粒度分布、活性评价等影响,并使用比表面积和激光粒度分析仪、XRD和SEM等表征方法对水淬硅锰渣粉的比表面积、粒径分布、难磨物相和颗粒形貌进行了探讨,同时也研究了不同粉磨时间的水淬硅锰渣粉作掺合料对地聚物抗压强度的影响。结果表明,随着粉磨时间延长,硅锰渣粒度分布逐渐左移,颗粒粒径逐步细化,石英相逐渐向无定形结构转变。从成本角度考虑,当粉磨时间为25 min、比表面积为1.8281 m2/g时作粉煤灰地聚物掺合料时,28 d抗压强度可达26.79 MPa。并确定出难磨物相为直锰辉石晶体结构,以及不同的含锰物相。
Abstract:This is an article in the field of mineral processing engineering. According to the principle of mechanochemistry, the water-quenched silico-manganese slag is ground by vibrating mill. The effect of grinding time on the specific surface area, particle size distribution and activity evaluation of the water-quenched silico-manganese slag is studied, and the specific surface area is used. The specific surface area, particle size distribution, phase analysis and particle morphology of water-quenched silico-manganese slag powder were discussed with laser particle size analyzer, XRD and SEM and other characterization methods. At the same time, the water with different grinding time was also studied. Effect of silicomanganese slag powder as admixture on the compressive strength of geopolymers. The results show that with the extension of the grinding time, the particle size distribution of the silicomanganese slag gradually shifts to the left, the particle size is gradually refined, and the quartz phase gradually changes to an amorphous structure. From the perspective of cost, when the grinding time is 25 min and the specific surface area is 1.8281 m2/g as fly ash geopolymer admixture, the 28 d compressive strength can reach 26.79 MPa. And it is determined that the difficult-to-wear phase is the orthomanganese pyroxene crystal structure, and different manganese-containing phases.
-
表 1 水淬硅锰渣化学成分/%
Table 1. Chemical composition of water quenched silicomanganese slag
SiO2 Al2O3 CaO MgO MnO K2O SO3 其他 42.17 21.66 20.71 5.60 5.77 1.08 1.37 1.973 表 2 粉煤灰化学成分/%
Table 2. Chemical composition of fly ash
SiO2 Al2O3 CaO MgO Fe2O3 K2O Na2O 44.8 22.6 6.2 1.8 5.7 1.7 1.5 表 3 粉煤灰/硅锰渣地质聚合物配方
Table 3. Formulation of fly ash/silico-manganese slag geopolymer
类型 粉煤灰/% 硅锰渣/% NaOH/% 水玻璃/% 水/% FGM-5 min 80 20 5 20 17.5 FGM-10 min 80 20 5 20 17.5 FGM-15 min 80 20 5 20 17.5 FGM-20 min 80 20 5 20 17.5 FGM-25 min 80 20 5 20 17.5 FGM-30 min 80 20 5 20 17.5 注:碱激发剂的用量按照原料的质量占比 表 4 不同粉磨时间对硅锰渣粉特征粒径的影响
Table 4. Effect of different grinding time on the characteristic particle size of silicomanganese slag powder
粉磨时间/
min特征粒径/μm D10 D50 D90 5 4.027 21.85 59.45 10 0.166 13.68 57.80 15 0.132 11.89 43.21 20 1.896 12.34 43.09 25 0.125 8.691 29.97 30 0.134 8.398 29.58 表 5 粉磨5、15 min下Si、Al和O的结合能
Table 5. Binding energies of Si, Al and O under 5 min and 15 min grinding
粉磨时间/
min结合能/eV Si 2p Al 2p O 1s 5 102.2 74.25 531.50 15 101.8 73.80 531.45 -
[1] 李胜春, 朱春江, 宁伟. 最新固废利用热态熔渣生产优质矿棉的研究和应用[C]. 2019第22届全国玻璃窑炉技术研讨交流会, 2019: 12.LI S C, ZHU C J, NING W. Research and application of the latest solid waste to use hot molten slag to produce high-quality mineral wool [C]. 2019 22nd National Glass Furnace Technology Seminar, 2019: 12.
LI S C, ZHU C J, NING W. Research and application of the latest solid waste to use hot molten slag to produce high-quality mineral wool [C]. 2019 22nd National Glass Furnace Technology Seminar, 2019: 12. [2] 窦林瑞. 浅谈硅锰渣在建筑材料中的利用[J]. 中国锰业, 2017, 35(4):136-138.DOU L R. Discussion on the utilization of silicomanganese slag in building materials[J]. China Manganese Industry, 2017, 35(4):136-138.
DOU L R . Discussion on the utilization of silicomanganese slag in building materials[J]. China Manganese Industry,2017 ,35 (4 ):136 -138 .[3] 崔孝炜, 狄燕清, 南宁. 钢渣的机械力粉磨特性[J]. 矿产保护与利用, 2017(5):77-81.CUI X W, DI Y Q, NAN N. Mechanical grinding characteristics of steel slag[J]. Mineral Resources Protection and Utilization, 2017(5):77-81.
CUI X W, DI Y Q, NAN N . Mechanical grinding characteristics of steel slag[J]. Mineral Resources Protection and Utilization,2017 (5 ):77 -81 .[4] 崔孝炜, 狄燕清, 邓婉心, 等. 铁尾矿机械力粉磨特性的基础研究[J]. 非金属矿, 2020, 43(1):73-75.CUI X W, DI Y Q, DENG W X, et al. Basic research on mechanical grinding characteristics of iron tailings[J]. Nonmetallic Minerals, 2020, 43(1):73-75.
CUI X W, DI Y Q, DENG W X, et al . Basic research on mechanical grinding characteristics of iron tailings[J]. Nonmetallic Minerals,2020 ,43 (1 ):73 -75 .[5] 饶磊, 吴六顺, 周云, 等. 高温改性及风淬处理对钢渣易磨性影响的工业性试验研究[J]. 炼钢, 2017, 33(6):73-77.RAO L, WU L S, ZHOU Y, et al. Industrial test research on effect of high temperature modification and air quenching treatment on the grindability of steel slag[J]. Steelmaking, 2017, 33(6):73-77.
RAO L, WU L S, ZHOU Y, et al . Industrial test research on effect of high temperature modification and air quenching treatment on the grindability of steel slag[J]. Steelmaking,2017 ,33 (6 ):73 -77 .[6] 杨南如. 非传统胶凝材料化学[M]. 武汉: 武汉理工大学出版社, 2017: 76-77.YANG N R. The Chemistry of unconventional cementitious materials[M]. Wuhan: Wuhan University of Technology Press, 2017: 76-77.
YANG N R. The Chemistry of unconventional cementitious materials[M]. Wuhan: Wuhan University of Technology Press, 2017: 76-77. [7] 赵计辉. 钢渣的粉磨/水化特征及其复合胶凝材料的组成与性能[D]. 北京: 中国矿业大学(北京), 2015.ZHAO J H. Grinding/hydration characteristics of steel slag and the composition and properties of composite cementitious materials[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
ZHAO J H. Grinding/hydration characteristics of steel slag and the composition and properties of composite cementitious materials[D]. Beijing: China University of Mining and Technology (Beijing), 2015. [8] 刘璇, 李如燕, 崔孝炜, 等. 机械力对高硅金尾矿粒度及活性的影响[J]. 中国粉体技术, 2019, 25(2):42-46.LIU X, LI R Y, CUI X W, et al. The effect of mechanical force on the particle size and activity of high-silicon gold tailings[J]. China Powder Science and Technology, 2019, 25(2):42-46.
LIU X, LI R Y, CUI X W, et al . The effect of mechanical force on the particle size and activity of high-silicon gold tailings[J]. China Powder Science and Technology,2019 ,25 (2 ):42 -46 .[9] 王晨, 高宏, 刘淑红, 等. 中低品位磷矿粉的机械力化学活化与活性表征[J]. 化工矿物与加工, 2012, 41(7):1-4+8.WANG C, GAO H, LIU S H, et al. Mechanochemical activation and activity characterization of middle and low grade phosphate rock powder[J]. Industrial Minerals and Processing, 2012, 41(7):1-4+8.
WANG C, GAO H, LIU S H, et al . Mechanochemical activation and activity characterization of middle and low grade phosphate rock powder[J]. Industrial Minerals and Processing,2012 ,41 (7 ):1 -4+8 .[10] 郑伟亮, 盖国胜. 不同粉碎方式对物料粉碎的研究[C]. 第九届全国粉体工程学术会暨相关设备、产品交流会, 2003: 3.ZHENG W L, GAI G S. Research on material crushing by different crushing methods[C]. The 9th National Powder Engineering Conference and Related Equipment and Products Exchange Conference, 2003: 3.
ZHENG W L, GAI G S. Research on material crushing by different crushing methods[C]. The 9th National Powder Engineering Conference and Related Equipment and Products Exchange Conference, 2003: 3. [11] He T, Li Z, Zhao S, et al. Study on the particle morphology, powder characteristics and hydration activity of blast furnace slag prepared by different grinding methods[J]. Construction and Building Materials, 2021, 270.
[12] Okada K, Kameshima Y, Yasumori A. Chemical shifts of silicon X‐ray photoelectron spectra by polymerization structures of silicates[J]. Journal of the American Ceramic Society, 2010, 81(7):1970-1972.
[13] 张娜, 刘晓明, 孙恒虎. 赤泥-煤矸石基胶凝材料水化过程XPS分析[J]. 金属矿山, 2014(3):171-176.ZHANG N, LIU X M, SUN H H. XPS analysis of hydration process of red mud-gangue based cementitious material[J]. Metal Mine, 2014(3):171-176.
ZHANG N, LIU X M, SUN H H . XPS analysis of hydration process of red mud-gangue based cementitious material[J]. Metal Mine,2014 (3 ):171 -176 .