-
摘要:
这是一篇矿物材料领域的论文。通过沥青包覆球形晶质石墨和炭化处理制备出锂离子电池负极材料,系统探究了沥青软化点对沥青炭化包覆球形晶质石墨负极材料结构和电化学性能的影响。结果表明,沥青炭化包覆后在石墨表面形成了一层无定形炭,改善了球形晶质石墨的表面形貌,但未改变其晶体结构;高沥青软化点包覆后的复合材料具有更好的电化学性能和循环稳定性,在温度为280 ℃条件下,经过30次循环充放电后容量没有明显的衰减,容量保持率为85.07%,比未处理的试样提高了4.74%。
Abstract:This is an article in the field of mineral materials. The effect of pitch softening point on the structure and electrochemical performance of pitch carbonized spherical crystalline graphite anode materials were systematically investigated. The results show that a layer of amorphous carbon is formed on the surface of graphite after carbonization of pitch, which improves the surface morphology of spherical crystalline graphite, but does not change its crystal structure; The composites with high pitch softening point have better electrochemical performance and cycling stability. After 280 cycles of temperature, the capacity of the composites is not significantly reduced after 30 cycles of charge discharge, and the capacity retention rate is 85.07%, which is 4.74% higher than that of the untreated ones.
-
表 1 石油沥青基本性质
Table 1. Basic properties of petroleum asphalt
原料 编号 软化点/ ℃ 结焦值/% 喹啉不溶物/% 灰分/% 石油沥青1 XD-150 157.4 40.75 0.22 0.039 石油沥青2 XD-200 202.0 53.44 0.11 0.010 石油沥青3 XD-280 272.8 76.61 0.19 0.017 表 2 不同软化点沥青包覆试样首次充放电性能
Table 2. First charge/discharge performance of asphalt-coated specimens with different softening points
试样 充电容量/mAhg-1 放电容量/mAhg-1 不可逆容量/mAhg-1 首次充放
电效率/%未处理 364 393.6 29.6 92.48 XD-150 361.6 394.8 33.2 91.59 XD-200 362.7 397.0 34.3 91.36 XD-280 361.1 402.1 41 89.80 表 3 不同软化点沥青包覆试样倍率充放电性能
Table 3. Multiplication rate charge/discharge performance of asphalt-coated specimens with different softening points
试样 放电容量保持率/% 0.1 C容量保持率/% 0.2C 0.5C 1 C 未处理 90.98 70.1 27.93 98.96 XD-150 93.21 77.63 41.5 99.56 XD-200 93.64 78.23 46.43 99.57 XD-280 96.08 86.62 76.69 99.59 -
[1] 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出试验研究[J]. 矿产综合利用, 2020(2):128-134.LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2):128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023
doi: 10.3969/j.issn.1000-6532.2020.02.023LI J L, HE Y Q, FU Y P, et al . Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources,2020 (2 ):128 -134 .[2] 张翠, 王成扬, 陈明鸣. 磺化沥青包覆石墨用作锂离子电池负极材料[J]. 电源技术, 2015, 39(5):889-890,924.ZHANG C, WANG C Y, CHEN M M. Sulfonated pitch-coated graphite as an anode material for lithium-ion batteries[J]. Power Supply Technology, 2015, 39(5):889-890,924. doi: 10.3969/j.issn.1002-087X.2015.05.005
doi: 10.3969/j.issn.1002-087X.2015.05.005ZHANG C, WANG C Y, CHEN M M . Sulfonated pitch-coated graphite as an anode material for lithium-ion batteries[J]. Power Supply Technology,2015 ,39 (5 ):889 -890,924 .[3] 徐乐, 刘洪波, 李富进, 等. 酚醛树脂炭包覆天然微晶石墨作锂离子电池负极材料[J]. 非金属矿, 2010, 33(1):24-27.XU L, LIU H B, LI F J, et al. Phenolic resin carbon coated natural microcrystalline graphite as anode material for lithium-ion batteries[J]. Nonmetallic Mining, 2010, 33(1):24-27. doi: 10.3969/j.issn.1000-8098.2010.01.008
doi: 10.3969/j.issn.1000-8098.2010.01.008XU L, LIU H B, LI F J, et al . Phenolic resin carbon coated natural microcrystalline graphite as anode material for lithium-ion batteries[J]. Nonmetallic Mining,2010 ,33 (1 ):24 -27 .[4] 刘树和, 英哲, 王作明, 等. 天然石墨球-热解炭核壳结构的制备及电化学性能研究(英文)[J]. 新型炭材料, 2008(1):30-36.LIU S H, YING Z, WANG Z M, et al. Preparation and electrochemical properties of natural graphite spheres and pyrolyzed carbon core-shell structures[J]. New Carbon Materials, 2008(1):30-36.
LIU S H, YING Z, WANG Z M, et al . Preparation and electrochemical properties of natural graphite spheres and pyrolyzed carbon core-shell structures[J]. New Carbon Materials,2008 (1 ):30 -36 .[5] 唐致远, 刘春燕, 徐国祥. 掺杂型炭材料在锂离子电池中的应用[J]. 新型炭材料, 2001(1):71,72-75.TANG Z Y, LIU C Y, XU G X. Application of doped carbon materials in lithium-ion batteries[J]. New Carbon Materials, 2001(1):71,72-75.
TANG Z Y, LIU C Y, XU G X . Application of doped carbon materials in lithium-ion batteries[J]. New Carbon Materials,2001 (1 ):71,72 -75 .[6] 陆浩, 刘柏男, 禇赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016, 5(2): 109-119.LU H , LIU B N, CHU G, et al. Advances in industrialization technology of anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 109-119.
LU H , LIU B N, CHU G, et al. Advances in industrialization technology of anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 109-119. [7] Wang H, Yoshio M. Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery[J]. Journal of Power Sources, 2001, 93(1):123-129.
[8] Ohta N, Nagaoka K, Hoshi K, et al. Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating[J]. Journal of Power Sources, 2009, 194(2):985-990. doi: 10.1016/j.jpowsour.2009.06.013
[9] 陈秀, 何建平, 党王娟, 等. 可溶性酚醛树脂为碳源合成有序介孔炭及其电催化性能[J]. 新型炭材料, 2008(3):281-288.CHEN X, HE J P, DANG W J, et al. Synthesis of ordered mesoporous carbon using soluble phenolic resin as carbon source and its electrocatalytic properties[J]. New Carbon Materials, 2008(3):281-288.
CHEN X, HE J P, DANG W J, et al . Synthesis of ordered mesoporous carbon using soluble phenolic resin as carbon source and its electrocatalytic properties[J]. New Carbon Materials,2008 (3 ):281 -288 .[10] Bryngelsson H, Stjerndahl M, Gustafsson T, et al. How dynamic is the Sei?[J]. Journal of Power Sources, 2007, 174(2):970-975. doi: 10.1016/j.jpowsour.2007.06.050