铁尾矿中磷灰石旋转摩擦静电分选提纯

张龙宇, 吴中贤, 申有悦, 陶东平. 铁尾矿中磷灰石旋转摩擦静电分选提纯[J]. 矿产综合利用, 2024, 45(2): 157-164. doi: 10.3969/j.issn.1000-6532.2024.02.026
引用本文: 张龙宇, 吴中贤, 申有悦, 陶东平. 铁尾矿中磷灰石旋转摩擦静电分选提纯[J]. 矿产综合利用, 2024, 45(2): 157-164. doi: 10.3969/j.issn.1000-6532.2024.02.026
ZHANG Longyu, WU Zhongxian, SHEN Youyue, TAO Dongping. Apatite Enrichment from Iron Ore Tailings by Rotary Triboelectrostatic Separator[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 157-164. doi: 10.3969/j.issn.1000-6532.2024.02.026
Citation: ZHANG Longyu, WU Zhongxian, SHEN Youyue, TAO Dongping. Apatite Enrichment from Iron Ore Tailings by Rotary Triboelectrostatic Separator[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 157-164. doi: 10.3969/j.issn.1000-6532.2024.02.026

铁尾矿中磷灰石旋转摩擦静电分选提纯

  • 基金项目: 国家自然科学基金(51804188)
详细信息
    作者简介: 张龙宇(1999-),男,硕士,主要从事细颗粒摩擦静电分选研究
    通讯作者: 陶东平(1962-),男,博士,博士生导师,研究方向为矿物加工工程。
  • 中图分类号: TD951

Apatite Enrichment from Iron Ore Tailings by Rotary Triboelectrostatic Separator

More Information
  • 这是一篇矿物加工工程领域的论文。我国许多铁尾矿中含有磷灰石等宝贵磷矿资源,但目前缺乏经济有效的分选技术将它分离出来利用。旋转摩擦静电分选技术具有无需水和药剂,环境污染小、能耗低等优点。本文重点考查了紫铜、不锈钢、铝和PVC四种不同摩擦材料对铁尾矿中磷灰石、石英、长石和钛铁矿等主要组成矿物荷电特性的影响。研究了沈家铁尾矿中磷灰石分选富集性能随旋转摩擦静电分选技术主要参数的变化规律并确定了较佳条件。结果表明,PVC摩擦后的磷灰石与其他矿物的荷电差异较大。在实际铁尾矿分选实验中,当摩擦起电器转速为5000 r/min,给料速度为50 g/min,协风风速为0.5 m/s,进风风速为0.6 m/s时,获得了磷精矿P2O5品位27.6%、回收率49.3%的良好指标,实现了铁尾矿中磷灰石的有效分选提纯。

  • 加载中
  • 图 1  样品中主要矿物粒度组成

    Figure 1. 

    图 2  粒子在分选室内受力和运动状态

    Figure 2. 

    图 3  紫铜(a)、不锈钢(b)、铝(c)、PVC(d)在不同起电器转速下对矿物摩擦荷电大小及极性的影响

    Figure 3. 

    图 4  磷灰石与钛铁矿(a)、长石(b)及石英(c)在不同起电器转速下荷电差异

    Figure 4. 

    图 5  摩擦起电器转速对磷灰石富集效果的影响

    Figure 5. 

    图 6  给矿速度对磷灰石富集效果的影响

    Figure 6. 

    图 7  协风风速对磷灰石富集效果的影响

    Figure 7. 

    图 8  进风风速对磷灰石富集效果的影响

    Figure 8. 

    表 1  样品主要矿物组成/%

    Table 1.  Main mineral composition of the samples

    磷灰石 石英 长石 钛铁矿 黑云母 辉石 铁角闪石 黄铁矿 榍石 磁铁矿 金红石 方解石 其他 总计
    20.44 18.25 15.74 14.42 5.83 5.16 3.67 3.16 2.00 1.67 0.79 0.73 1.64 100.00
    下载: 导出CSV

    表 2  样品化合物分析结果/%

    Table 2.  Compound analysis results of samples

    P2O5SiO2Fe2O3Al2O3CaOTiO2MgOK2ONa2O
    8.6446.6913.0111.099.616.185.72.371.97
    下载: 导出CSV

    表 3  磷灰石的连体情况统计

    Table 3.  Statistics of apatite hyphenation

    嵌布
    类型
    自由
    表面
    与黑
    云母
    与长石 与石英 与钛
    铁矿
    与辉石 与其他 总计
    分布
    率/%
    97.66 0.30 0.58 0.20 0.25 0.37 0.65 100.00
    下载: 导出CSV

    表 4  纯矿物的多元素分析结果

    Table 4.  Results of multielement analysis of pure minerals

    磷灰石 名称 P2O5 CaO MgO Al2O3 Fe2O3 F
    含量/% 38.71 55.63 0.20 2.10 1.38 1.98
    石英 名称 SiO2 Al2O3 CaO MgO Fe2O3 P2O5
    含量/% 99.46 0.39 0.09 0.03 0.01 0.02
    长石 名称 SiO2 Al2O3 Na2O Fe2O3 K2O 其他
    含量/% 65.51 17.53 2.07 1.02 11.82 2.05
    钛铁矿 名称 TiO2 FeO MgO Al2O3 SiO2 其他
    含量/% 51.06 38.76 4.80 2.07 1.58 1.73
    下载: 导出CSV
  • [1]

    曾理, 姜小明. Gemini表面活性剂体系下钙质磷矿中白云石的可浮性研究[J]. 矿产综合利用, 2020(1): 83-88.ZENG L, JIANG X M. Floatability study of dolomite in calcareous phosphorite under Gemini surfactant system [J]. Multipurpose Utilization of Mineral Resources, 2020(1): 6.

    ZENG L, JIANG X M. Floatability study of dolomite in calcareous phosphorite under Gemini surfactant system [J]. Multipurpose Utilization of Mineral Resources, 2020(1): 6.

    [2]

    韩继康, 梁冰, 李国峰, 等. 某含磷铁矿的可选性实验研究[J]. 矿产综合利用, 2020(2): 49-54.HAN J K, LIANG B, LI G F, et al. Experimental study on the selectivity of a phosphorus-bearing iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 6.

    HAN J K, LIANG B, LI G F, et al. Experimental study on the selectivity of a phosphorus-bearing iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 6.

    [3]

    于慧梅, 何欢, 孟博. 辽宁某磷铁矿中回收磷灰石浮选实验研究[J]. 贵州大学学报(自然科学版), 2021, 38(3):48-53.YU H M, HE H, MENG B. Experimental study on flotation of recovered apatite in a Liaoning iron phosphate mine[J]. Journal of Guizhou University, 2021, 38(3):48-53.

    YU H M, HE H, MENG B. Experimental study on flotation of recovered apatite in a Liaoning iron phosphate mine[J]. Journal of Guizhou University, 2021, 38(3):48-53.

    [4]

    于慧敏, 戴惠新, 陈晓鸣, 等. 国外摩擦电选的研究与发展[J]. 矿产保护与利用, 2015(4):67-72.YU H M, DAI H X, CHEN X M, et al. Research and development of friction electrowinning abroad[J]. Conservation and Utilization of Mineral Resources, 2015(4):67-72.

    YU H M, DAI H X, CHEN X M, et al. Research and development of friction electrowinning abroad[J]. Conservation and Utilization of Mineral Resources, 2015(4):67-72.

    [5]

    王乾帅, 陶东平, 赵通林, 等. 辉钼矿干法旋转摩擦电选预抛尾研究[J]. 矿产综合利用, 2021(6):179-184.WANG Q S, TAO D P, ZHAO T L, et al. Study of dry rotary friction electrowinning pre-cast tailing of molybdenite ore[J]. Multipurpose Utilization of Mineral Resources, 2021(6):179-184.

    WANG Q S, TAO D P, ZHAO T L, et al. Study of dry rotary friction electrowinning pre-cast tailing of molybdenite ore[J]. Multipurpose Utilization of Mineral Resources, 2021(6):179-184.

    [6]

    叶世旺, 陶东平, 陶有俊, 等. 粒度对粉煤灰旋转摩擦电选效果的影响研究[J]. 煤炭技术, 2022, 41(2):219-222.YE S W, TAO D P, TAO Y J, et al. Study on the effect of particle size on the effect of rotary friction electric separation of fly ash[J]. Coal Technology, 2022, 41(2):219-222.

    YE S W, TAO D P, TAO Y J, et al. Study on the effect of particle size on the effect of rotary friction electric separation of fly ash[J]. Coal Technology, 2022, 41(2):219-222.

    [7]

    YOUJUN T, LING Z, DONGPING T, et al. Effects of key factors of rotary triboelectrostatic separator on efficiency of fly ash decarbonization[J]. International Journal of Mining Science and Technology, 2017, 27(6).

    [8]

    TAO D, AL-HWAITI M. Beneficiation study of Eshidiya phosphorites using a rotary triboelectrostatic separator[J]. Mining Science and Technology, 2010, 20(3):357-364.

    [9]

    D. T, A. S, Q. L, et al. Dry Cleaning of pulverized coal using a novel rotary triboelectrostatic separator (RTS)[J]. International Journal of Coal Preparation and Utilization, 2011, 31(3-4).

    [10]

    FANGYUAN M, YOUJUN T, YUSHUAI X, et al. Effects of pulverized coal modification on rotary triboelectric separation[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2020.

    [11]

    SHEN Y, TAO D, ZHANG L, et al. An experimental study of triboelectrostatic particle charging behavior and its associated fundamentals[J]. Powder Technology, 2023, 429:118880. doi: 10.1016/j.powtec.2023.118880

    [12]

    TOSHIYUKI N, TAKESHI S, HIROAKI M. The environment humidity effect on the tribo-charge of powder[J]. Powder Technology, 2003, 135.

    [13]

    高孟华, 章新喜, 陈清如. 煤系伴生矿物介电常数和摩擦带电实验研究[J]. 中国矿业, 2007(8):106-109.GAO M H, ZHANG X X, CHEN Q R. Experimental study of dielectric constant and frictional charging of coal associated minerals[J]. China Mining Magazine, 2007(8):106-109.

    GAO M H, ZHANG X X, CHEN Q R. Experimental study of dielectric constant and frictional charging of coal associated minerals[J]. China Mining Magazine, 2007(8):106-109.

    [14]

    申有悦, 邵怀志, 杨晓, 等. 摩擦静电分选技术研究与应用进展[J]. 矿冶工程, 2022, 42(5):44-50.SHEN Y Y, SHAO H Z, YANG X, et al. Progress in friction electrostatic sorting technology research and application[J]. Mining and Metallurgical Engineering, 2022, 42(5):44-50.

    SHEN Y Y, SHAO H Z, YANG X, et al. Progress in friction electrostatic sorting technology research and application[J]. Mining and Metallurgical Engineering, 2022, 42(5):44-50.

    [15]

    彭真, 杨兴, 王海锋, 等. 钛铁矿摩擦静电分选研究[J]. 金属矿山, 2018(2):80-84.PENG Z, YANG X, WANG H F, et al. Study on friction electrostatic separation of ilmenite[J]. Metal Mine, 2018(2):80-84.

    PENG Z, YANG X, WANG H F, et al. Study on friction electrostatic separation of ilmenite[J]. Metal Mine, 2018(2):80-84.

    [16]

    D TAO ZHAO Y. Dry Cleaning of pulverized coal using a novel rotary triboelectrostatic separator (RTS)[J]. Coal Preparation, 2011, 31(3-4):187-202.

    [17]

    LING Z, YOUJUN T, LU Y. Research on flow field and kinematic characteristics of fly ash particles in rotary triboelectrostatic separator[J]. Powder Technology, 2018, 336.

    [18]

    AHMED S, DANIEL T. Innovative RTS Technology for dry beneficiation of phosphate[J]. Procedia Engineering, 2014, 83.

    [19]

    ZHANG L, TAO Y J, TAO D P, et al. Experimental study and numerical simulation on fly ash separation with different plate voltages in rotary triboelectrostatic separator[J]. Physicochemical Problems of Mineral Processing, 2018, 54(3):722-731.

    [20]

    TAO Y, DING Q, DENG M, et al. Electrical properties of fly ash and its decarbonization by electrostatic separation[J]. International Journal of Mining Science and Technology, 2015, 25(4):629-633. doi: 10.1016/j.ijmst.2015.05.017

    [21]

    ZHANG L, TAO Y, TAO D, et al. Experimental study and numerical simulation on fly ash separation with different plate voltages in rotary triboelectrostatic separator[J]. Physicochemical Problems of Mineral Processing, 2018(3).

  • 加载中

(8)

(4)

计量
  • 文章访问数:  501
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2023-11-17
刊出日期:  2024-04-25

目录