-
摘要:
这是一篇冶金工程领域的论文。本文选用TiH2粉作为实验原料,研究冷等静压不同压制压强和保压时间下TiH2粉的烧结行为,揭示压制压强和保压时间对TiH2烧结试样收缩率和相对密度的影响,以提高压坯密度和产品性能。研究结果表明:烧结试样收缩率随压制压强增加减小,压制压强达到400 MPa后,压制压强对烧结试样相对密度影响不大,出于制样效率及该冷等静压机压制压强极限考虑,压制压强不宜超过400 MPa;烧结试样收缩率随保压时间增加减小,当保压时间达到20 min后,烧结试样相对密度随着保压时间的延长变化甚微,出于制样效率的考虑,保压时间以15~20 min为宜。
Abstract:This is an article in the field of metallurgical engineering. In this article, TiH2 powder was selected as the experimental raw material to study the sintering behavior of TiH2 powder under different pressing pressure and holding time in cold isostatic pressing, to reveal the effects of pressing pressure and holding time on the shrinkage as well as the relative density of TiH2 sintered specimens, in order to improve the density of the billet and the performance of the products. The results show that the shrinkage of the sintered sample decreases with the increase of the pressing pressure, and when the pressing pressure reaches 400 MPa, the pressing pressure has little effect on the relative density of the sintered sample. For the consideration of the sample preparation efficiency and the pressing pressure limit of the cold isostatic press, the pressing pressure should not exceed 400 Mpa. The shrinkage of sintered samples decreases with the increase of holding time, and when the holding time reaches 20 min, the relative density of sintered samples changes little with the extension of holding time. For the consideration of sample preparation efficiency, the suitable holding time is 15~20 min.
-
Key words:
- Metallurgical engineering /
- Titanium powder /
- TiH2 /
- Cold isostatic pressure /
- Sintering
-
表 1 TiH2粉化学成分/%
Table 1. Chemical composition of TiH2 powder
Ti H Al Si O C N Fe 95.315 3.97 0.08 0.007 0.46 0.012 0.016 0.14 -
[1] 邓孝纯, 李慧, 王鹏程, 等. 金属钛的制备工艺[J]. 矿产综合利用, 2020(1):39-42.DENG X C, LI H, WANG P C, et al. Preparation process of metal titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(1):39-42.
DENG X C, LI H, WANG P C, et al. Preparation process of metal titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(1):39-42.
[2] 霍红英, 李瑞萍. 高钛型高炉渣光催化材料研究进展[J]. 矿产综合利用, 2020(4):36-41.HUO H Y, LI R P. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):36-41.
HUO H Y, LI R P. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):36-41.
[3] 严伟平, 曾小波. 攀西地区钒钛磁铁矿资源开发利用水平评估方法研究[J]. 矿产综合利用, 2020(6):79-83.YAN W P, ZENG X B. Study on the evaluation method of development and utilization level of vanadium-titanium magnetite mine in Panxi district[J]. Multipurpose Utilization of Mineral Resources, 2020(6):79-83.
YAN W P, ZENG X B. Study on the evaluation method of development and utilization level of vanadium-titanium magnetite mine in Panxi district[J]. Multipurpose Utilization of Mineral Resources, 2020(6):79-83.
[4] 高洋. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1):6-10.GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.
GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10.
[5] 许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021(1):23-31.XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-31.
XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-31.
[6] 张玮, 尚青亮, 刘捷, 等. 氢化钛粉烧结制备纯钛工艺研究[J]. 材料导报, 2018, 32(S2):379-381.ZHANG W, SHANG Q L, LIU J, et al. Study on the prepration of pure titanium by titanium hydridepowder sintering[J]. Materials Reports, 2018, 32(S2):379-381.
ZHANG W, SHANG Q L, LIU J, et al. Study on the prepration of pure titanium by titanium hydridepowder sintering[J]. Materials Reports, 2018, 32(S2):379-381.
[7] 赵志刚, 李益民, 何浩, 等. 不同粒度组成钛粉的压制行为和烧结性能研究[J]. 金属材料与冶金工程, 2017, 45(2): 17-22.ZHAO Z G, LI Y M, HE H, et al. Research on compaction behavior and sintering propertiesof titaniam powder with diferent size distribution [J]. Metal Materials and Metallurgy Engineering, 2017, 45(2): 17-22.
ZHAO Z G, LI Y M, HE H, et al. Research on compaction behavior and sintering propertiesof titaniam powder with diferent size distribution [J]. Metal Materials and Metallurgy Engineering, 2017, 45(2): 17-22.
[8] 胡熊. 高比例钒钛粉烧结技术研究及应用[J]. 重庆科技学院学报:自然科学版, 2021, 23(2):111-116.HU X. Research and application of sintering technology of high proportionvanadium - titanium powder[J]. Journal of Chongqing University of Science and Technology: Natural Science Edition, 2021, 23(2):111-116.
HU X. Research and application of sintering technology of high proportionvanadium - titanium powder[J]. Journal of Chongqing University of Science and Technology: Natural Science Edition, 2021, 23(2):111-116.
[9] 杜苗凤, 张培志, 郭方全, 等. 粉料和冷等静压对凝胶注模成型Al2O3陶瓷致密化的影响[J]. 机械工程材料, 2020, 44(10):28-32.DU M F, ZHANG P Z, GUO F Q, et al. Effect of powder and cold isostatic pressing on densification of A12O3 ceramics molded by gelcasting[J]. Materials for Mechanical Engineering, 2020, 44(10):28-32.
DU M F, ZHANG P Z, GUO F Q, et al. Effect of powder and cold isostatic pressing on densification of A12O3 ceramics molded by gelcasting[J]. Materials for Mechanical Engineering, 2020, 44(10):28-32.
[10] YL A , JZA B . Fabrication of transparent MgAl2O4 ceramics by gelcasting and cold isostatic pressing[J]. Ceramics International, 2020, 46(4): 4154-4158.
[11] TANG Y Y. Influence of isostatic pressing technology on the production of powder metallurgy materials[J]. New Materialand New Technology, 2018, 44(2):68-69.