湖北省恩施某光伏玻璃用石英砂提纯制备实验

曾牧源, 马博华, 赵李欣然, 李克尧, 包申旭, 杨思原. 湖北省恩施某光伏玻璃用石英砂提纯制备实验[J]. 矿产综合利用, 2024, 45(2): 144-150. doi: 10.3969/j.issn.1000-6532.2024.02.024
引用本文: 曾牧源, 马博华, 赵李欣然, 李克尧, 包申旭, 杨思原. 湖北省恩施某光伏玻璃用石英砂提纯制备实验[J]. 矿产综合利用, 2024, 45(2): 144-150. doi: 10.3969/j.issn.1000-6532.2024.02.024
ZENG Muyuan, MA Bohua, ZHAOLI Xinran, LI Keyao, BAO Shenxu, YANG Siyuan. Purification and Preparation of Quartz Sand for Photovoltaic Glass in Enshi of Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 144-150. doi: 10.3969/j.issn.1000-6532.2024.02.024
Citation: ZENG Muyuan, MA Bohua, ZHAOLI Xinran, LI Keyao, BAO Shenxu, YANG Siyuan. Purification and Preparation of Quartz Sand for Photovoltaic Glass in Enshi of Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 144-150. doi: 10.3969/j.issn.1000-6532.2024.02.024

湖北省恩施某光伏玻璃用石英砂提纯制备实验

  • 基金项目: 国家重点研发计划(2022YFE0126800); 国家自然科学基金(52281240408)
详细信息
    作者简介: 曾牧源(1999-),男,硕士研究生,研究方向为矿物加工工程
    通讯作者: 杨思原(1990-),男,教授,博士,博士研究生导师,研究方向为矿物加工工程。
  • 中图分类号: TD952

Purification and Preparation of Quartz Sand for Photovoltaic Glass in Enshi of Hubei Province

More Information
  • 这是一篇关于矿物加工工程领域的文章。光伏玻璃用石英砂是支撑新能源行业发展必不可少的原料之一,其供应安全保障事关我国双碳政策的成功实施。本文以湖北省恩施州某大型石英砂矿为研究对象,开展了工艺矿物学与除杂提纯实验研究,发现该石英砂矿的主要杂质为斜长石、云母、褐铁矿和金红石,采用了“分级-重选-磁选-酸浸”选矿工艺流程,最终获得符合粒度要求(0.106 ~ 0.500 mm)的石英砂精矿产率为67.61 %,其SiO2含量由97.36 %提高至99.79 %,有害元素Fe2O3、TiO2与Al2O3含量则分别降低至75、80、630 g/t,石英精矿产品各项指标达到了光伏玻璃用硅质原料的生产要求,实现了该石英砂矿的有效利用。

  • 加载中
  • 图 1  石英砂矿样XRD

    Figure 1. 

    图 2  石英砂主要矿物偏光显微镜

    Figure 2. 

    图 3  不同磨矿时间下0.106 ~ 0.500 mm粒级石英产率

    Figure 3. 

    图 4  磁场强度对石英磁选精矿品位与回收率的影响

    Figure 4. 

    图 5  磁场强度对石英磁选精矿Fe2O3与TiO2含量的影响

    Figure 5. 

    图 6  湖北恩施某石英砂选矿工艺流程

    Figure 6. 

    表 1  石英砂原矿中主要矿物及杂质含量/%

    Table 1.  Main useful minerals and impurities of quartz samples

    Fe2O3Al2O3SiO2TiO2CaOCr2O3*
    0.251.1297.360.0730.1001.95
    *单位为g/t
    下载: 导出CSV

    表 2  较佳磨矿时间的各阶段0.106 ~ 0.500 mm粒级石英产率

    Table 2.  Yields of 0.106 ~0.500 mm quartz for each stage of grinding under the optimum grinding time of quartz samples

    作业名称对作业产率/%对原矿产率/%
    原矿分级34.1134.11
    一段磨矿60.0431.30
    二段磨矿67.728.98
    三段磨矿76.821.16
    两段磨矿总产率-74.39
    三段磨矿总产率-75.55
    下载: 导出CSV

    表 3  石英砂重磁联合选别实验结果

    Table 3.  Combined gravity separation and magnetic separation results of quartz sand

    产品产率/%Fe2O3含量/%TiO2含量/%
    作业产率原矿产率
    重选尾矿2.101.561.2801.950
    一段磁选尾矿4.783.480.6600.032
    一段磁选精矿95.2269.350.0670.019
    给矿100.0074.390.1200.060
    下载: 导出CSV

    表 4  石英砂盐酸酸浸正交实验结果

    Table 4.  Orthogonal results of quartz sand leaching tests using hydrochloric acid as the leaching reagent

    实验组号 正交序列 时间A/h 温度B/℃ 液固比C 精矿含量/%
    Al2O3 Fe2O3 SiO2 TiO2
    1 111 3.0 25 1∶1 0.29 0.0230 99.26 0.010
    2 123 3.0 50 3∶1 0.42 0.0241 99.08 0.016
    3 132 3.0 75 2∶1 0.42 0.0210 99.12 0.016
    4 213 6.0 25 3∶1 0.22 0.0233 99.25 0.008
    5 222 6.0 50 2∶1 0.36 0.0200 99.15 0.015
    6 231 6.0 75 1∶1 0.33 0.0214 99.20 0.015
    7 312 9.0 25 2∶1 0.29 0.0220 99.14 0.012
    8 321 9.0 50 1∶1 0.25 0.0172 99.22 0.009
    9 333 9.0 75 3∶1 0.38 0.0202 99.15 0.014
    极差 0.05 0.07 0.09
    下载: 导出CSV

    表 5  盐酸-氢氟酸正交实验结果

    Table 5.  Results of hydrochloric acid-hydrofluoric acid orthogonal test

    实验组号 正交序列 酸配比A(HCl 15%- HF 5%) 时间B/h 温度C/℃ 精矿含量/%
    Al2O3 Fe2O3 SiO2 TiO2
    1 111 1∶1 3.0 25 0.140 0.0300 99.67 0.009
    2 123 1∶1 6.0 75 0.063 0.0075 99.79 0.008
    3 132 1∶1 9.0 50 0.068 0.0099 99.79 0.009
    4 213 2∶1 3.0 75 0.066 0.0092 99.77 0.008
    5 222 2∶1 6.0 50 0.092 0.0100 99.69 0.009
    6 231 2∶1 9.0 25 0.130 0.0200 99.70 0.010
    7 312 3∶1 3.0 50 0.130 0.0210 99.64 0.009
    8 321 3∶1 6.0 25 0.160 0.0270 99.59 0.010
    9 333 3∶1 9.0 70 0.071 0.0099 99.71 0.009
    极差 0.10 0.04 0.10
    下载: 导出CSV
  • [1]

    杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘, 2022, 29(1):231-244.YANG X Y, SUN C, CAO J Y, et al. High purity quartz: Research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1):231-244.

    YANG X Y, SUN C, CAO J Y, et al. High purity quartz: Research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1):231-244.

    [2]

    汪灵, 李彩侠, 王艳, 等. 我国高纯石英加工技术现状与发展建议[J]. 矿物岩石, 2011, 31(4): 110-114.WANG L, LI C X, WANG Y, et al. China technologies present of high-purity quartz processing and the development propositions[J]. Mineral Petrol, 2011, 31: 110-114.

    WANG L, LI C X, WANG Y, et al. China technologies present of high-purity quartz processing and the development propositions[J]. Mineral Petrol, 2011, 31: 110-114.

    [3]

    林敏, 徐顺秋, 刘子源, 等. 高纯石英(SiO2)评述(一): 微量、微细粒铝硅酸盐矿物的活化与分离[J]. 矿产综合利用, 2022(6): 17-20+25.LIN M, XU S Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part Ⅰ): activation and separation of trace, fine-grain alumino silicate gangue[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 17-20+25.

    LIN M, XU S Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part Ⅰ): activation and separation of trace, fine-grain alumino silicate gangue[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 17-20+25.

    [4]

    肖蕲航, 李育彪, 汤启宙. 陕西某石英砂工艺矿物学及可选性实验[J]. 矿产综合利用, 2022(3):167-171.XIAO Q H, LI Y B, TANG Q Z. Study on process mineralogy and selectivity of a quartz sand in Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2022(3):167-171. doi: 10.3969/j.issn.1000-6532.2022.03.030

    XIAO Q H, LI Y B, TANG Q Z. Study on process mineralogy and selectivity of a quartz sand in Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2022(3):167-171. doi: 10.3969/j.issn.1000-6532.2022.03.030

    [5]

    李育彪, 雷绍民, 魏桢伦, 等. 高纯石英砂制备技术与原理[M]. 北京: 科学出版社, 2023.LI Y B, LEI S M, WEI Z L, et al. Preparation technology and principle of high purity quartz sand[M]. Beijing: Science Press, 2023.

    LI Y B, LEI S M, WEI Z L, et al. Preparation technology and principle of high purity quartz sand[M]. Beijing: Science Press, 2023.

    [6]

    林敏, 贾倩, 刘子源, 等. 高纯石英(SiO2)评述(二): 晶格杂质的活化与分离技术[J]. 矿产综合利用, 2022(6):21-25.LIN M, JIA Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part Ⅱ): activation and separation of lattice impurities[J]. Multipurpose Utilization of Mineral Resources, 2022(6):21-25. doi: 10.3969/j.issn.1000-6532.2022.06.004

    LIN M, JIA Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part Ⅱ): activation and separation of lattice impurities[J]. Multipurpose Utilization of Mineral Resources, 2022(6):21-25. doi: 10.3969/j.issn.1000-6532.2022.06.004

    [7]

    雷绍民, 裴振宇, 钟乐乐, 等. 脉石英砂无氟反浮选热压浸出技术与机理研究[J]. 非金属矿, 2014, 37(2):40-43.LEI S M, PEI Z Y, ZHONG L L, et al. Study on the technology and mechanism of reverse flotation and hot pressing leaching with vein quartz[J]. Non-Metallic Mines, 2014, 37(2):40-43. doi: 10.3969/j.issn.1000-8098.2014.02.013

    LEI S M, PEI Z Y, ZHONG L L, et al. Study on the technology and mechanism of reverse flotation and hot pressing leaching with vein quartz[J]. Non-Metallic Mines, 2014, 37(2):40-43. doi: 10.3969/j.issn.1000-8098.2014.02.013

    [8]

    张晋, 胡修权, 张立, 等. 某优质脉石英制备超高纯石英砂工艺实验研究[J]. 非金属矿, 2023, 46(2):65-69.ZHANG J, HU X Q, ZHANG L, et al. Experimental study on preparation of ultra-high purity quartz sand from a high quality gangue[J]. Non-Metallic Mines, 2023, 46(2):65-69. doi: 10.3969/j.issn.1000-8098.2023.02.016

    ZHANG J, HU X Q, ZHANG L, et al. Experimental study on preparation of ultra-high purity quartz sand from a high quality gangue[J]. Non-Metallic Mines, 2023, 46(2):65-69. doi: 10.3969/j.issn.1000-8098.2023.02.016

    [9]

    陈坤, 李育彪, 王志杰, 等. 内蒙古某脉石英提纯实验研究[J]. 非金属矿, 2022, 45(1):59-62.CHEN K, LI Y B, WANG Z J, et al. Experimental study on purification of a vein quartz from Inner Mongolia[J]. Non-Metallic Mines, 2022, 45(1):59-62. doi: 10.3969/j.issn.1000-8098.2022.01.016

    CHEN K, LI Y B, WANG Z J, et al. Experimental study on purification of a vein quartz from Inner Mongolia[J]. Non-Metallic Mines, 2022, 45(1):59-62. doi: 10.3969/j.issn.1000-8098.2022.01.016

    [10]

    张立, 胡修权, 张晋, 等. 鄂西地区某脉石英中流体包裹体特征分析[J]. 矿产综合利用, 2023(3):205-210.ZHANG L, HU X Q, ZHANG J, et al. Characteristic analysis on fluid inclusions of vein quartz in Western Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023(3):205-210. doi: 10.3969/j.issn.1000-6532.2023.03.034

    ZHANG L, HU X Q, ZHANG J, et al. Characteristic analysis on fluid inclusions of vein quartz in Western Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023(3):205-210. doi: 10.3969/j.issn.1000-6532.2023.03.034

    [11]

    林敏, 徐顺秋, 刘子源, 等. 高纯石英(SiO2)评述(三): 流体包裹体的分析、活化与分离[J]. 矿产综合利用, 2022(6):26-29.LIN M, XU S Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part III): Analysis, activation and separation of fluid inclusions[J]. Multipurpose Utilization of Mineral Resources, 2022(6):26-29. doi: 10.3969/j.issn.1000-6532.2022.06.005

    LIN M, XU S Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part III): Analysis, activation and separation of fluid inclusions[J]. Multipurpose Utilization of Mineral Resources, 2022(6):26-29. doi: 10.3969/j.issn.1000-6532.2022.06.005

    [12]

    张立, 胡修权, 彭兴华, 等. 高纯石英砂原料矿中流体包裹体研究[J]. 矿产综合利用, 2022(3):188-192.ZHANG L, HU X Q, PENG X H, et al. Research on fluid inclusions in vein quartz as higher purity quartz sand[J]. Multipurpose Utilization of Mineral Resources, 2022(3):188-192. doi: 10.3969/j.issn.1000-6532.2022.03.033

    ZHANG L, HU X Q, PENG X H, et al. Research on fluid inclusions in vein quartz as higher purity quartz sand[J]. Multipurpose Utilization of Mineral Resources, 2022(3):188-192. doi: 10.3969/j.issn.1000-6532.2022.03.033

    [13]

    Platias S, Vatalis K I, Charalampides G. Suitability of quartz sands for different industrial applications[J]. Procedia Economics and Finance, 2014, 14:491-498. doi: 10.1016/S2212-5671(14)00738-2

    [14]

    ZHANG Z, LI J, LI X, et al. High efficiency iron removal from quartz sand using phosphoric acid[J]. International Journal of Mineral Processing, 2012, 114-117:30-34. doi: 10.1016/j.minpro.2012.09.001

  • 加载中

(6)

(5)

计量
  • 文章访问数:  746
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2023-09-08
刊出日期:  2024-04-25

目录