-
摘要:
这是一篇矿业工程领域的论文。高岭石与蒙脱石是煤泥中存在的主要黏土矿物,而黏土矿物是影响煤泥沉降的主要因素。本文以精煤、高岭石和蒙脱石作为研究对象,首先探索了超声强度、作用时间、超声脉冲间隔三类超声条件对其沉降效果以及絮团直径的影响,实验结果表明:当超声密度为0.4 W/cm3,超声作用时间为2 min时,高岭石和蒙脱石的沉降速度都得到了改善,选择合适的超声脉冲间隔时间对样品进行间断超声可以进一步提高其的沉降效果,但是超声处理反而不利于精煤沉降。将精煤、高岭石和蒙脱石试样按2∶1∶1的比例混合制样,改变超声脉冲间隔时间对其进行超声处理,结果表明:对于混合试样,未经超声处理时沉降速度为2.67 cm/min,在超声密度为0.2 W/cm3,超声脉冲间隔时间为4 s时作用2 min,沉降速度提高到5.41 cm/min。图像分析与电位表征显示,适当的超声脉冲间隔时间使药剂作用发挥更充分,进而双电层得到最大程度压缩,最终提高了颗粒凝聚和絮团生长效果。
Abstract:This is an article in the field of mining engineering. Kaolinite and montmorillonite are the main clay minerals in coal slime, and clay minerals are the main factors affecting the sedimentation of coal slime. This paper takes clean coal, kaolinite and montmorillonite as the research objects. The influence of ultrasonic intensity, action time, and ultrasonic pulse interval on its sedimentation effect and floc diameter was investigated. The test results show that when the ultrasonic density is 0.4 W/cm3, when the ultrasonic action time is 2 min, the sedimentation speed of kaolinite and montmorillonite are improved. Further choosing the appropriate ultrasonic pulse interval can further improve the sedimentation effect, but ultrasonic treatment is not conducive to the clean coal settlement. Further, the clean coal, kaolinite and montmorillonite samples were mixed at a ratio of 2:1:1, and the ultrasonic pulse interval time was changed to perform ultrasonic treatment. The results showed that: for the mixed sample, it settled without ultrasonic treatment, the velocity is 2.67 cm/min. When the ultrasonic density is 0.2 W/cm3 and the ultrasonic pulse interval is 4 s, the settling velocity is increased to 5.41 cm/min. Image analysis and potential characterization show that the proper ultrasonic pulse interval time enables the drug to play more fully, and then the electric double layer is compressed to the greatest extent, and finally the particle agglomeration and the growth of flocs are the best.
-
Key words:
- Mining engineering /
- Coal slime /
- Sedimentation /
- Ultrasonic treatment /
- Flocs
-
表 1 矿物样品定量分析结果
Table 1. Quantitative analysis results of mineral samples
实验样品 矿物含量/% 蒙脱石 伊利石 高岭石 石英 长石 方解石 高岭石 1.7 2.6 84.4 7.4 1.8 2.1 蒙脱石 87 3.7 5.6 0.4 1.4 表 2 絮凝沉降实验较佳药剂制度
Table 2. Optimal pharmaceutical system for the flocculation sedimentation experiment
实验样品 药剂用量/(g/t) 沉降速度/
(cm/min)透光率/% 精煤 1000 Al2(SO4)3 +100 PAM 46.56 88.5 高岭石 100 PAM 64.43 90.0 蒙脱石 300 PAM 17.04 38.2 -
[1] 马晓敏, 樊玉萍, 董宪姝, 等. 基于摄像分析法的煤泥絮团特性及相关关系[J]. 矿产综合利用, 2019(6):145-149.MA X M, FAN Y P, DONG X S, et al. Study on characteristics and correlation of coal tailings floc based on video analysis method Ma[J]. Multipurpose Utilization of Mineral Resources, 2019(6):145-149.
MA X M, FAN Y P, DONG X S, et al. Study on characteristics and correlation of coal tailings floc based on video analysis method Ma[J]. Multipurpose Utilization of Mineral Resources, 2019(6):145-149.
[2] 宋帅, 樊玉萍, 马晓敏, 等. 煤泥水中煤与不同矿物相互作用的模拟研究[J]. 矿产综合利用, 2020(1):168-172.SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172.
SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172.
[3] 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55.CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55.
CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55.
[4] 文献才. 平煤天宏难处理煤泥水沉降试验研究[J]. 煤炭工程, 2019, 51(10):148-151.WEN X C. Experimental study on sedimentation of Tianhong difficult to handle coal slurry in Pingdingshan coal mine[J]. Coal Engineering, 2019, 51(10):148-151.
WEN X C. Experimental study on sedimentation of Tianhong difficult to handle coal slurry in Pingdingshan coal mine[J]. Coal Engineering, 2019, 51(10):148-151.
[5] 王云飞, 李宏亮, 董宪姝, 等. 伊利石对煤泥水过滤机制的影响研究[J]. 矿产综合利用, 2020(4):202-208.WANG Y F, LI H L, DONG X S, et al. Study on effect of illite on the filtration mechanism of coal slime water[J]. Multipurpose Utilization of Mineral Resources, 2020(4):202-208.
WANG Y F, LI H L, DONG X S, et al. Study on effect of illite on the filtration mechanism of coal slime water[J]. Multipurpose Utilization of Mineral Resources, 2020(4):202-208.
[6] 张明青, 刘炯天, 何伟, 等. 煤泥水絮凝处理中絮凝体的分形特征[J]. 环境科学研究, 2009, 22(8):956-960.ZHANG M Q, LIU J T, HE W, et al. Fractal characteristics of flocs in coal slime water flocculation treatment[J]. Environmental Science Research, 2009, 22(8):956-960.
ZHANG M Q, LIU J T, HE W, et al. Fractal characteristics of flocs in coal slime water flocculation treatment[J]. Environmental Science Research, 2009, 22(8):956-960.
[7] 王永田, 张明青, 刘炯天. 分形理论在难沉降煤泥水澄清药剂选择中的应用[J]. 煤炭学报, 2010(12):2116-2120.WANG Y T, ZHANG M Q, LIU J T. Application of fractal theory in the selection of clarification agents for difficult-to-settle slime water[J]. Chinese Journal of Coal, 2010(12):2116-2120.
WANG Y T, ZHANG M Q, LIU J T. Application of fractal theory in the selection of clarification agents for difficult-to-settle slime water[J]. Chinese Journal of Coal, 2010(12):2116-2120.
[8] 亓欣, 匡亚莉. 黏土矿物对煤泥表面性质的影响[J]. 煤炭科学技术, 2013, 41(7):126-128.QI X, KUANG Y L. Influence of clay minerals on the surface properties of coal slime[J]. Coal Science and Technology, 2013, 41(7):126-128.
QI X, KUANG Y L. Influence of clay minerals on the surface properties of coal slime[J]. Coal Science and Technology, 2013, 41(7):126-128.
[9] 刘炯天, 张明青, 曾艳, 等. 不同类型黏土对煤泥水中颗粒分散行为的影响[J]. 中国矿业大学学报, 2010, 39(1): 59-63.LIU J T, ZHANG M Q, ZENG Y , et al. Effects of different types of clay on particle dispersion behavior in coal slime water[J]. Journal of China University of Mining and Technology, 2010, 39(1): 59-63.
LIU J T, ZHANG M Q, ZENG Y , et al. Effects of different types of clay on particle dispersion behavior in coal slime water[J]. Journal of China University of Mining and Technology, 2010, 39(1): 59-63.
[10] 戴曦, 张传福. 超声空化与过程强化[J]. 有色金属:冶炼部分, 2001(1):20-22.DAI X, ZHANG C F. Ultrasonic cavitation and process strengthening[J]. Nonferrous Metals:Extractive Metallurgy, 2001(1):20-22.
DAI X, ZHANG C F. Ultrasonic cavitation and process strengthening[J]. Nonferrous Metals:Extractive Metallurgy, 2001(1):20-22.
[11] 李剑波, 董宪姝, 李宏亮, 等. Li, Na, K基蒙脱石的基因特性与其水化膨胀特性的关系[J]. 金属矿山, 2020, 528(6):142-147.LI J B, DONG X Z, LI H L, et al. The relationship between genetic characteristics of Li, Na, K-based montmorillonite and its hydration swelling characteristics[J]. Metal Mines, 2020, 528(6):142-147.
LI J B, DONG X Z, LI H L, et al. The relationship between genetic characteristics of Li, Na, K-based montmorillonite and its hydration swelling characteristics[J]. Metal Mines, 2020, 528(6):142-147.