Effect of Ultrasound on Graphite Flotation of Different Stages of Luobei
-
摘要:
这是一篇矿物加工工程领域的论文。为了探讨超声预处理对石墨浮选不同段数浮选效果的影响,进行了不同超声时间对石墨粗选、精选的影响实验。研究结果表明:当矿石中含有易泥化矿物时,超声预处理不能提高石墨粗选效果。超声预处理精选2段、4段、6段的浮选效果与常规精选相比,随着超声预处理时间的增加,石墨精选效果逐渐提高,当超声预处理2.5 min时,石墨精选效果较好。在逐段超声精选实验中,超声预处理0.5 min时,对精选1~4段作用效果不明显,对精选5段、精选6段有一定效果;超声预处理2.5 min时,对每一精选段均有明显效果,超声预处理精选效果的排序是超精5>超精6>超精4>超精3>超精2>超精1。研究证明,在石墨精选的后段进行超声预处理的浮选效果优于前段。
Abstract:This is an article in the field of mineral processing engineering. In order to explore the influence of ultrasonic pretreatment on the graphite flotation process of different stages, tests on the effects of different ultrasonic time on the roughing and cleaning of graphite were carried out. The research results show that when the ore contains muddy minerals, ultrasonic pretreatment can’t improve the effect of graphite roughing. Compared with the conventional flotation, the flotation effect of ultrasonic pretreatment for ultrasonic treatment cleaning stage 2, 4 and 6 is gradually improved with the increase of the ultrasonic pretreatment time. When the ultrasonic pretreatment time is 2.5 min, the graphite selection effect is the best. In the test of stage by stage ultrasonic cleaning, the effect of ultrasonic pretreatment for 0.5 min on 1~4 stages is not obvious, but it has a certain effect on 5 and 6 stages. When the ultrasonic pretreatment time is 2.5 min, the effect of each fine section is obvious. The order of the cleaning effect of ultrasonic pretreatment is ultrasonic treatment cleaning stage 5>stage 6>stage 4>stage 3>stage 2>stage 1. The research shows that the flotation effect of ultrasonic pretreatment in the rear section of graphite cleaning is better than that in the front one.
-
Key words:
- Mineral processing engineering /
- Ultrasonic pretreatment /
- Roughing /
- Cleaning /
- Recovery rate
-
-
表 1 矿石的矿物组成及相对含量
Table 1. Mineral composition and relative content of ores
矿物名称 相对含量/% 矿物名称 相对含量/% 石墨 16.69 石英 21.58 磁黄铁矿 3.98 长石 12.02 黄铁矿 0.99 白云母 13.54 钛铁矿 0.41 透闪石 14.02 磷灰石 0.24 斜黝帘石 7.18 榍石 0.75 方解石 4.01 黑云母 1.91 绿泥石 1.95 其余矿物 0.73 总计 100.00 注: 本数据在矿冶科技集团有限公司国家重点实验室完成 表 2 粗选实验结果
Table 2. Test results of roughing
产品名称 产率/% 碳含量/% 回收率/% 精矿 31.65 43.11 84.96 尾矿 68.35 3.54 15.04 原矿 100.00 16.06 100.00 表 3 开路流程实验结果
Table 3. Test results of open circuit process
指标 原矿 粗精 粗尾 精1 中矿1 精2 中矿2 精3 中矿3 精4 中矿4 精5 中矿5 精矿 中矿6 产率/% 100.00 32.74 67.26 21.55 11.19 16.17 5.38 13.34 2.83 11.23 2.11 8.60 2.63 6.32 2.28 品位/% 16.42 42.65 3.65 61.60 6.15 76.69 16.25 84.71 38.85 88.85 62.70 91.34 80.70 91.75 90.20 本级回收率/% 100.00 85.05 14.95 95.07 4.93 93.41 6.59 91.12 8.88 88.30 11.70 78.74 21.26 73.81 26.19 注:本级回收率为某段精矿中有用矿物占本段入料中有用矿物的百分率。 表 4 超声预处理0.5 min石墨精选各段的本级回收率/%
Table 4. Recovery rate of each stage of graphite cleaning by ultrasonic pretreatment for 0.5 min
精选段数 未超声 样本1 样本2 样本3 样本4 样本5 样本6 精选1段 94.71 94.64 94.76 95.42 94.63 94.80 94.68 精选2段 93.58 94.02 94.28 94.31 94.41 93.87 94.22 精选3段 93.59 93.36 93.20 93.36 92.20 93.04 93.35 精选4段 90.57 89.51 88.63 91.74 89.18 91.19 90.51 精选5段 82.26 80.35 79.67 78.85 84.55 84.96 84.09 精选6段 77.94 76.87 72.14 75.85 74.39 80.03 83.22 表 5 超声预处理2.5 min精选各段的本级回收率/%
Table 5. Recovery rate of each stage selected by ultrasonic pretreatment for 2.5 min
本级回收率 未超声 样本1 样本2 样本3 样本4 样本5 样本6 精选1段 94.71 95.28 94.93 94.80 94.60 94.59 94.91 精选2段 93.58 93.48 94.52 94.31 93.81 94.08 94.27 精选3段 93.59 93.23 93.43 95.82 93.66 94.16 94.32 精选4段 90.57 92.22 92.99 93.18 93.67 90.60 90.71 精选5段 82.26 82.26 83.47 83.85 83.68 88.89 83.98 精选6段 77.94 78.43 79.53 79.80 80.29 79.51 84.53 -
[1] 时虎. 石墨的开发及其应用[J]. 化工科技市场, 2001(12):24-27.SHI H. Development and application of graphite[J]. Chemial Technology Market, 2001(12):24-27.
SHI H. Development and application of graphite[J]. Chemial Technology Market, 2001(12):24-27.
[2] 李飞, 高伦, 彭成龙, 等. 小鳞片膨胀石墨的制备及电化学性能[J]. 矿产综合利用, 2022(2):154-157.LI F, GAO L, PENG C L, et al. Preparation and electrochemical properties of small flake expanded graphite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):154-157.
LI F, GAO L, PENG C L, et al. Preparation and electrochemical properties of small flake expanded graphite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):154-157.
[3] 饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学: 技术科学, 2017, 47(1):13-31.RAO J, ZHANG P, HE S, et al. A review on the utilization of natural graphite and graphite-based materials[J]. Sci Sin Tech, 2017, 47(1):13-31. doi: 10.1360/N092015-00380
RAO J, ZHANG P, HE S, et al. A review on the utilization of natural graphite and graphite-based materials[J]. Sci Sin Tech, 2017, 47(1):13-31. doi: 10.1360/N092015-00380
[4] K S Novoselov, A K Geim, S V Morozov, et al. Elcetric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. doi: 10.1126/science.1102896
[5] 冯涛, 陈文革, 栗雯绮, 等. 石墨烯的组织性能、改性处理及应用前景[J]. 功能材料, 2020, 51(4):4028-4039.FENG T, CHEN W G, LI W Q, et al. Microstructure properties, modification treatments and application prospects of grapheme[J]. Journal of Functional Materials, 2020, 51(4):4028-4039.
FENG T, CHEN W G, LI W Q, et al. Microstructure properties, modification treatments and application prospects of grapheme[J]. Journal of Functional Materials, 2020, 51(4):4028-4039.
[6] 黄毅, 陈永胜. 石墨烯的功能化及其相关应用[J]. 中国科学(B辑: 化学), 2009, 39(9):887-896.HUANG Y, CHEN Y S. Functionalization of graphene and their applications[J]. Science in China(Part B: Chemistry), 2009, 39(9):887-896.
HUANG Y, CHEN Y S. Functionalization of graphene and their applications[J]. Science in China(Part B: Chemistry), 2009, 39(9):887-896.
[7] 李亚, 初静波, 王英凯, 等. 黑龙江某晶质石墨风化样分选实验研究[J]. 矿产综合利用, 2021(3):39-42.LI Y, CHU J B, WANG Y K, et al. Experimental study on separation of weathering flake graphite ore in Heilongjiang province[J]. Multipurpose Utilization of Mineral Resources, 2021(3):39-42.
LI Y, CHU J B, WANG Y K, et al. Experimental study on separation of weathering flake graphite ore in Heilongjiang province[J]. Multipurpose Utilization of Mineral Resources, 2021(3):39-42.
[8] 罗立群, 谭旭升, 田金星. 石墨提纯工艺研究进展[J]. 化工进展, 2014, 33(8):2110-2116.LUO L Q, TAN X S, TIAN J X. Research progress of graphite purification[J]. Chemical Industry and Engineering Progress, 2014, 33(8):2110-2116.
LUO L Q, TAN X S, TIAN J X. Research progress of graphite purification[J]. Chemical Industry and Engineering Progress, 2014, 33(8):2110-2116.
[9] 仝忠蕴, 刘磊, 袁致涛. 鸡西地区晶质石墨保护大鳞片新工艺技术研究[J]. 矿产综合利用, 2021(6):53-58.GONG Z Y, LIU L, YUAN Z T. Study on new technology of crystalline graphite to protect large flake in Jixi Area[J]. Multipurpose Utilization of Mineral Resources, 2021(6):53-58.
GONG Z Y, LIU L, YUAN Z T. Study on new technology of crystalline graphite to protect large flake in Jixi Area[J]. Multipurpose Utilization of Mineral Resources, 2021(6):53-58.
[10] C·勒特马瑟, 崔洪山, 肖力子. 应用超声波强化泡沫浮选[J]. 国外金属矿选矿, 2002(10):21-25.C·LETMATHE, CUI H S, XIAO L Z. Application of ultrasonic wave to enhance foam flotation[J]. Metallic Ore Dressing Abroad, 2002(10):21-25.
C·LETMATHE, CUI H S, XIAO L Z. Application of ultrasonic wave to enhance foam flotation[J]. Metallic Ore Dressing Abroad, 2002(10):21-25.
[11] S D Barma , P K Baskey, D S Rao, et al . Ultrasonic-assisted flotation for enhancing the recovery of flaky graphite from low-grade graphite ore[J]. Ultrasonics Sonochemistry, 2019(56): 386-396.
[12] 康文泽, 李会建. 超声预处理对石墨精选效果的影响[J]. 中国矿业大学学报, 2020, 49(6):1193-1198.KANG W Z, LI H J. Effect of ultrasonic pretreatment on cleaner flotation of graphite[J]. Journal of China University of Mining & Technology, 2020, 49(6):1193-1198.
KANG W Z, LI H J. Effect of ultrasonic pretreatment on cleaner flotation of graphite[J]. Journal of China University of Mining & Technology, 2020, 49(6):1193-1198.
[13] Kang Wenze, Li Huijian. Enhancement of flaky graphite cleaning by ultrasonic treatment[J]. Royal Society Open Science, 2019, 6:191160. doi: 10.1098/rsos.191160
-