-
摘要:
这是一篇矿物加工工程领域的论文。针对某矽卡岩性铜矿石嵌布粒度较细及有价元素种类多,分别为铜、硫、铁和伴生元素银的特点。比较了铜优先浮选、铜硫混合浮选-铜硫分离两种工艺对资源综合回收的影响,其中铜硫混浮-铜硫分离工艺可以实现铜、硫、银的较好回收,同时磁铁矿有一定回收价值。实验可以得到铜品位24.39%、铜回收率91.68%的铜精矿,硫品位33.10%、硫回收率61.19%的硫精矿。银在铜精矿中得到了富集,银品位185 g/t、银回收率83.21%。浮选尾矿经再磨后磁选可以增加铁精矿回收率,经过两段弱磁选可以得到铁品位56.48%,铁回收率33.84%的铁精矿,该工艺可为同类型矿石选矿提供意见参考。
Abstract:This is an article in the field of mineral processing engineering. For a skarn copper ore, the disseminated particle size is fine, the valuable elements in the ore are Cu, S, Fe and the associated element Ag. Compared with the effects of copper preferential flotation and copper-sulfur mixed flotation-copper-sulfur separation on the comprehensive recovery, the copper-sulfur mixed flotation-copper-sulfur separation process can achieve better recovery of copper, sulfur and silver, and magnetite has a certain recovery value. Copper concentrate with copper grade of 24.39% and copper recovery of 91.68% and sulfur concentrate with sulfur grade of 33.10% and sulfur recovery of 61.19% were obtained by copper sulfur mixed flotation. Ag was enriched in the copper concentrate, with a grade of 185 g/t and Ag recovery of 83.21%. The recovery of iron concentrate can be increased after the regrinding magnetic separation of flotation tailings. With two-stage weak magnetic separation, iron concentrate with iron grade of 56.48% and iron recovery of 33.84% can be obtained. The results can provide a reference for the similar copper sulfide.
-
-
表 1 试样化学多元素分析结果/%
Table 1. Multielement analysis results of the sample ore
Cu Pb Zn S Fe Au* Ag* SiO2 As CaO Al2O3 MgO P 1.70 <0.05 0.25 8.46 23.73 0.1 13.9 22.56 <0.10 19.80 2.57 1.93 0.027 *单位为g/t 表 2 铜物相分析结果
Table 2. Analysis results of the copper phase
名称 硫酸盐
中的铜游离
氧化铜结合
氧化铜硫化铜及
其他铜合计 含量/% 0.013 <0.01 0.077 1.61 1.70 分布率/% 0.76 - 4.53 94.71 100.00 表 3 优先浮选探索实验结果
Table 3. Results of preferential flotation exploration test
用量粗选/(g/t) 产品名称 产率/
%铜品位/
%铜回收率/
%石灰1000(pH值=7),
丁基黄药120精矿 5.93 12.15 41.31 中矿 6.14 12.79 45.03 石灰2000(pH值=8.5),丁基黄药120 精矿 4.71 14.76 41.80 中矿 5.18 13.00 40.48 石灰4000(pH值=12),丁基黄药120 精矿 2.64 16.72 25.74 中矿 4.33 19.37 48.81 石灰6000(pH值=14),丁基黄药120 精矿 1.88 5.19 5.90 中矿 3.68 22.85 50.90 石灰2000(pH值=8.5),丁基黄药60 精矿 2.96 11.99 20.30 中矿 4.70 17.72 47.54 石灰2000(pH值=8.5),丁基黄药160 精矿 5.87 13.34 44.77 中矿 6.28 11.36 40.78 石灰2000(pH值=8.5),乙基黄药100 精矿 6.27 7.84 28.75 中矿 6.62 13.27 51.38 石灰2000(pH值=8.5),乙基黄药150 精矿 5.21 7.84 23.87 中矿 5.47 12.88 41.15 石灰2000(pH值=8.5),乙基黄药200 精矿 6.41 9.15 34.47 中矿 5.55 12.37 40.35 表 4 铜硫混浮碳酸钠用量实验结果
Table 4. Results of sodium carbonate dosage in copper-sulfur mixed floatation
碳酸钠用量粗选/
(g/t)产品
名称产率/
%铜品位/
%铜回收率/
%0,pH值=7 精矿 22.18 7.46 92.98 500,pH值=7 精矿 20.01 8.00 93.97 1000,pH值=8 精矿 17.93 8.97 92.81 表 5 粗选磨矿细度实验结果
Table 5. Results of grinding fineness test of roughing
-0.074 mm/% 产品
名称产率/% 品位/% 回收率/% 个别 累计 个别 平均 个别 累计 60 精矿 19.22 7.90 89.62 中矿 6.09 25.31 1.54 6.37 5.53 95.15 尾矿 74.69 100.00 0.110 1.69 4.85 100.00 70 精矿 20.62 7.82 92.54 中矿 4.98 25.60 1.34 6.56 3.83 96.37 尾矿 74.40 100.00 0.085 1.74 3.63 100.00 80 精矿 20.01 8.00 93.97 中矿 5.78 25.79 0.75 6.37 2.55 96.52 尾矿 74.21 100.00 0.080 1.70 3.48 100.00 90 精矿 18.31 9.00 93.88 中矿 5.81 24.12 1.00 7.07 3.31 97.19 尾矿 75.88 100.00 0.065 1.76 2.81 100.00 表 6 丁基黄药用量实验结果
Table 6. Results of butyl xanthate dosage
丁基黄药用量
粗选/(g/t)产品名称 产率/% 铜品位/% 铜回收率/% 100 精矿 14.84 10.41 89.66 200 精矿 18.31 8.82 91.90 300 精矿 20.01 8.00 93.97 400 精矿 20.03 7.94 93.64 表 7 混合精矿再磨磨矿细度实验结果
Table 7. Results of regrinding fineness of mixed concentrate
再磨磨矿细度
-0.045 mm/%产品名称 产率/% 品位/% 回收率/% Cu S Cu S 50 铜精矿 5.14 20.05 31.92 65.76 20.88 硫精矿 7.77 2.55 26.81 12.64 26.52 75 铜精矿 4.68 26.01 33.73 67.71 18.25 硫精矿 4.27 3.12 32.00 7.70 15.97 90 铜精矿 4.09 26.17 33.47 65.86 16.61 硫精矿 3.00 4.79 31.55 8.85 11.49 表 8 闭路实验结果
Table 8. Results of closed-circuit test
产品
名称产率/% 品位/% 回收率/% Cu S Fe Ag* Cu S Fe Ag 铜精矿 6.38 24.39 29.79 45.00 185 91.68 23.80 12.31 83.21 硫精矿 14.76 0.53 33.10 48.08 13.46 4.61 61.19 30.43 14.01 尾矿 78.86 0.08 1.52 16.93 0.50 3.72 15.01 57.25 2.78 合计 100.00 1.70 7.98 23.32 14.18 100.00 100.00 100.00 100.00 *单位为g/t -
[1] 计启迪, 刘卫东, 陈伟, 等. 基于产业链的全球铜贸易网络结构研究[J]. 地理科学, 2021, 41(1):44-54.JI Q D, LIU W D, CHEN W, et al. Research on the structure of global copper trade network based on industrial chain[J]. Geoscience, 2021, 41(1):44-54.
JI Q D, LIU W D, CHEN W, et al. Research on the structure of global copper trade network based on industrial chain[J]. Geoscience, 2021, 41(1):44-54.
[2] 段绍甫. 我国有色金属矿产资源地位与全球矿业开发格局变化趋势[J]. 中国有色金属, 2021(8):58-61.DUAN S F. China's nonferrous metal mineral resources status and global mining development pattern change trend[J]. China Nonferrous Metals, 2021(8):58-61.
DUAN S F. China's nonferrous metal mineral resources status and global mining development pattern change trend[J]. China Nonferrous Metals, 2021(8):58-61.
[3] 任彦瑛. 中国铜矿资源的现状及潜力分析[J]. 中国金属通报, 2021(1):5-6.REN Y Y. Current situation and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1):5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003
REN Y Y. Current situation and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1):5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003
[4] 逄军武, 张玲, 达娃卓玛, 等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.
PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.
[5] 周涛, 黄国贤, 李飞, 等. 西藏某细粒嵌布难选硫化铜矿选矿实验研究[J]. 矿产综合利用, 2022 (2): 45-50.ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.
ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.
[6] 陈建华, 冯其明. 铜硫浮选分离技术进展[J]. 矿产保护与利用, 1997(4):17-21.CHEN J H, FENG Q M. Advances in copper-sulfur flotation separation technology[J]. Mineral Protection and Utilization, 1997(4):17-21.
CHEN J H, FENG Q M. Advances in copper-sulfur flotation separation technology[J]. Mineral Protection and Utilization, 1997(4):17-21.
[7] 王丰雨, 徐晓衣, 谢宝华, 等. 马来西亚某高硫铜矿磁选-浮选工艺实验研究[J]. 矿冶工程, 2020, 40(5):61-64.WANG F Y, XU X Y, XIE B H, et al. Experimental study on magnetic separation-flotation process of a high sulfur copper ore in Malaysia[J]. Mining and Metallurgical Engineering, 2020, 40(5):61-64.
WANG F Y, XU X Y, XIE B H, et al. Experimental study on magnetic separation-flotation process of a high sulfur copper ore in Malaysia[J]. Mining and Metallurgical Engineering, 2020, 40(5):61-64.
[8] 王刚, 于云龙, 马波, 等. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022(3):172-180.WANG G, YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180.
WANG G, YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180.
[9] 万丽, 周少珍, 曾克文, 等. 安徽某铜硫矿选矿工艺优化实验研究[J]. 矿产综合利用, 2019(6):41-44.WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on the optimization of beneficiation process of a copper-sulfur mine in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44.
WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on the optimization of beneficiation process of a copper-sulfur mine in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44.
[10] 祁忠旭. 高硫难选铜矿石的浮选研究[D]. 长沙: 中南大学, 2010.QI Z X. Flotation study of high sulfur refractory copper ores[D]. Changsha: Central South University, 2010.
QI Z X. Flotation study of high sulfur refractory copper ores[D]. Changsha: Central South University, 2010.
[11] 纪慧超. 高硫铜矿高效分选技术研究[D]. 昆明: 昆明理工大学, 2020.JI H C. Research on efficient separation technology of high sulfur copper ore[D]. Kunming: Kunming University of Science and Technology, 2020.
JI H C. Research on efficient separation technology of high sulfur copper ore[D]. Kunming: Kunming University of Science and Technology, 2020.
[12] 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987.HU X G. Beneficiation of nonferrous metal sulfide ores [M]. Beijing: Metallurgical Industry Press, 1987.
HU X G. Beneficiation of nonferrous metal sulfide ores [M]. Beijing: Metallurgical Industry Press, 1987.
-