某矽卡岩型铜硫矿资源综合回收工艺

张晶, 唐鑫, 吕向文, 简胜, 乔吉波, 张琳. 某矽卡岩型铜硫矿资源综合回收工艺[J]. 矿产综合利用, 2024, 45(3): 150-156. doi: 10.3969/j.issn.1000-6532.2024.03.023
引用本文: 张晶, 唐鑫, 吕向文, 简胜, 乔吉波, 张琳. 某矽卡岩型铜硫矿资源综合回收工艺[J]. 矿产综合利用, 2024, 45(3): 150-156. doi: 10.3969/j.issn.1000-6532.2024.03.023
ZHANG Jing, TANG Xin, LYU Xiangwen, JIAN Sheng, QIAO Jibo, ZHANG Lin. Comprehensive Recovery Process of Skarn Type Copper-sulfur Ore Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 150-156. doi: 10.3969/j.issn.1000-6532.2024.03.023
Citation: ZHANG Jing, TANG Xin, LYU Xiangwen, JIAN Sheng, QIAO Jibo, ZHANG Lin. Comprehensive Recovery Process of Skarn Type Copper-sulfur Ore Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 150-156. doi: 10.3969/j.issn.1000-6532.2024.03.023

某矽卡岩型铜硫矿资源综合回收工艺

  • 基金项目: 云南省科技人才与平台计划(202305AD160054)
详细信息
    作者简介: 张晶(1985-),女,正高级工程师,硕士,主要从事选矿工艺及药剂研发
    通讯作者: 简胜(1972-),男,正高级工程师,博士,主要从事选矿工艺及药剂研发
  • 中图分类号: TD952

Comprehensive Recovery Process of Skarn Type Copper-sulfur Ore Resources

More Information
    Corresponding author: JIAN Sheng
  • 这是一篇矿物加工工程领域的论文。针对某矽卡岩性铜矿石嵌布粒度较细及有价元素种类多,分别为铜、硫、铁和伴生元素银的特点。比较了铜优先浮选、铜硫混合浮选-铜硫分离两种工艺对资源综合回收的影响,其中铜硫混浮-铜硫分离工艺可以实现铜、硫、银的较好回收,同时磁铁矿有一定回收价值。实验可以得到铜品位24.39%、铜回收率91.68%的铜精矿,硫品位33.10%、硫回收率61.19%的硫精矿。银在铜精矿中得到了富集,银品位185 g/t、银回收率83.21%。浮选尾矿经再磨后磁选可以增加铁精矿回收率,经过两段弱磁选可以得到铁品位56.48%,铁回收率33.84%的铁精矿,该工艺可为同类型矿石选矿提供意见参考。

  • 加载中
  • 图 1  浮选实验流程

    Figure 1. 

    图 2  捕收剂种类实验

    Figure 2. 

    图 3  再磨石灰用量实验

    Figure 3. 

    图 4  闭路实验流程

    Figure 4. 

    表 1  试样化学多元素分析结果/%

    Table 1.  Multielement analysis results of the sample ore

    CuPbZnSFeAu*Ag*SiO2AsCaOAl2O3MgOP
    1.70<0.050.258.4623.730.113.922.56<0.1019.802.571.930.027
    *单位为g/t
    下载: 导出CSV

    表 2  铜物相分析结果

    Table 2.  Analysis results of the copper phase

    名称 硫酸盐
    中的铜
    游离
    氧化铜
    结合
    氧化铜
    硫化铜及
    其他铜
    合计
    含量/% 0.013 <0.01 0.077 1.61 1.70
    分布率/% 0.76 - 4.53 94.71 100.00
    下载: 导出CSV

    表 3  优先浮选探索实验结果

    Table 3.  Results of preferential flotation exploration test

    用量粗选/(g/t) 产品名称 产率/
    %
    铜品位/
    %
    铜回收率/
    %
    石灰1000(pH值=7),
    丁基黄药120
    精矿 5.93 12.15 41.31
    中矿 6.14 12.79 45.03
    石灰2000(pH值=8.5),丁基黄药120 精矿 4.71 14.76 41.80
    中矿 5.18 13.00 40.48
    石灰4000(pH值=12),丁基黄药120 精矿 2.64 16.72 25.74
    中矿 4.33 19.37 48.81
    石灰6000(pH值=14),丁基黄药120 精矿 1.88 5.19 5.90
    中矿 3.68 22.85 50.90
    石灰2000(pH值=8.5),丁基黄药60 精矿 2.96 11.99 20.30
    中矿 4.70 17.72 47.54
    石灰2000(pH值=8.5),丁基黄药160 精矿 5.87 13.34 44.77
    中矿 6.28 11.36 40.78
    石灰2000(pH值=8.5),乙基黄药100 精矿 6.27 7.84 28.75
    中矿 6.62 13.27 51.38
    石灰2000(pH值=8.5),乙基黄药150 精矿 5.21 7.84 23.87
    中矿 5.47 12.88 41.15
    石灰2000(pH值=8.5),乙基黄药200 精矿 6.41 9.15 34.47
    中矿 5.55 12.37 40.35
    下载: 导出CSV

    表 4  铜硫混浮碳酸钠用量实验结果

    Table 4.  Results of sodium carbonate dosage in copper-sulfur mixed floatation

    碳酸钠用量粗选/
    (g/t)
    产品
    名称
    产率/
    %
    铜品位/
    %
    铜回收率/
    %
    0,pH值=7 精矿 22.18 7.46 92.98
    500,pH值=7 精矿 20.01 8.00 93.97
    1000,pH值=8 精矿 17.93 8.97 92.81
    下载: 导出CSV

    表 5  粗选磨矿细度实验结果

    Table 5.  Results of grinding fineness test of roughing

    -0.074 mm/%产品
    名称
    产率/%品位/%回收率/%
    个别累计个别平均个别累计
    60精矿19.22 7.90 89.62 
    中矿6.0925.311.546.375.5395.15
    尾矿74.69100.000.1101.69 4.85100.00 
    70精矿20.62 7.82 92.54 
    中矿4.9825.601.346.563.8396.37
    尾矿74.40100.000.0851.743.63100.00
    80精矿20.01 8.00 93.97 
    中矿5.7825.790.756.372.5596.52
    尾矿74.21100.000.0801.70 3.48100.00 
    90精矿18.31 9.00 93.88 
    中矿5.8124.121.007.073.3197.19
    尾矿75.88100.00 0.0651.76 2.81100.00 
    下载: 导出CSV

    表 6  丁基黄药用量实验结果

    Table 6.  Results of butyl xanthate dosage

    丁基黄药用量
    粗选/(g/t)
    产品名称产率/%铜品位/%铜回收率/%
    100精矿14.8410.4189.66
    200精矿18.318.8291.90
    300精矿20.018.0093.97
    400精矿20.037.9493.64
    下载: 导出CSV

    表 7  混合精矿再磨磨矿细度实验结果

    Table 7.  Results of regrinding fineness of mixed concentrate

    再磨磨矿细度
    -0.045 mm/%
    产品名称产率/%品位/%回收率/%
    CuSCuS
    50铜精矿5.1420.0531.9265.7620.88
    硫精矿7.772.5526.8112.6426.52
    75铜精矿4.6826.0133.7367.7118.25
    硫精矿4.273.1232.007.7015.97
    90铜精矿4.0926.1733.4765.8616.61
    硫精矿3.004.7931.558.8511.49
    下载: 导出CSV

    表 8  闭路实验结果

    Table 8.  Results of closed-circuit test

    产品
    名称
    产率/%品位/%回收率/%
    CuSFeAg*CuSFeAg
    铜精矿6.3824.3929.7945.0018591.6823.8012.3183.21
    硫精矿14.760.5333.1048.0813.464.6161.1930.4314.01
    尾矿78.860.081.5216.930.503.7215.0157.252.78
    合计100.001.707.9823.3214.18100.00100.00100.00100.00
    *单位为g/t
    下载: 导出CSV
  • [1]

    计启迪, 刘卫东, 陈伟, 等. 基于产业链的全球铜贸易网络结构研究[J]. 地理科学, 2021, 41(1):44-54.JI Q D, LIU W D, CHEN W, et al. Research on the structure of global copper trade network based on industrial chain[J]. Geoscience, 2021, 41(1):44-54.

    JI Q D, LIU W D, CHEN W, et al. Research on the structure of global copper trade network based on industrial chain[J]. Geoscience, 2021, 41(1):44-54.

    [2]

    段绍甫. 我国有色金属矿产资源地位与全球矿业开发格局变化趋势[J]. 中国有色金属, 2021(8):58-61.DUAN S F. China's nonferrous metal mineral resources status and global mining development pattern change trend[J]. China Nonferrous Metals, 2021(8):58-61.

    DUAN S F. China's nonferrous metal mineral resources status and global mining development pattern change trend[J]. China Nonferrous Metals, 2021(8):58-61.

    [3]

    任彦瑛. 中国铜矿资源的现状及潜力分析[J]. 中国金属通报, 2021(1):5-6.REN Y Y. Current situation and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1):5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003

    REN Y Y. Current situation and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1):5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003

    [4]

    逄军武, 张玲, 达娃卓玛, 等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.

    PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.

    [5]

    周涛, 黄国贤, 李飞, 等. 西藏某细粒嵌布难选硫化铜矿选矿实验研究[J]. 矿产综合利用, 2022 (2): 45-50.ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.

    ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.

    [6]

    陈建华, 冯其明. 铜硫浮选分离技术进展[J]. 矿产保护与利用, 1997(4):17-21.CHEN J H, FENG Q M. Advances in copper-sulfur flotation separation technology[J]. Mineral Protection and Utilization, 1997(4):17-21.

    CHEN J H, FENG Q M. Advances in copper-sulfur flotation separation technology[J]. Mineral Protection and Utilization, 1997(4):17-21.

    [7]

    王丰雨, 徐晓衣, 谢宝华, 等. 马来西亚某高硫铜矿磁选-浮选工艺实验研究[J]. 矿冶工程, 2020, 40(5):61-64.WANG F Y, XU X Y, XIE B H, et al. Experimental study on magnetic separation-flotation process of a high sulfur copper ore in Malaysia[J]. Mining and Metallurgical Engineering, 2020, 40(5):61-64.

    WANG F Y, XU X Y, XIE B H, et al. Experimental study on magnetic separation-flotation process of a high sulfur copper ore in Malaysia[J]. Mining and Metallurgical Engineering, 2020, 40(5):61-64.

    [8]

    王刚, 于云龙, 马波, 等. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022(3):172-180.WANG G, YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180.

    WANG G, YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180.

    [9]

    万丽, 周少珍, 曾克文, 等. 安徽某铜硫矿选矿工艺优化实验研究[J]. 矿产综合利用, 2019(6):41-44.WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on the optimization of beneficiation process of a copper-sulfur mine in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44.

    WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on the optimization of beneficiation process of a copper-sulfur mine in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44.

    [10]

    祁忠旭. 高硫难选铜矿石的浮选研究[D]. 长沙: 中南大学, 2010.QI Z X. Flotation study of high sulfur refractory copper ores[D]. Changsha: Central South University, 2010.

    QI Z X. Flotation study of high sulfur refractory copper ores[D]. Changsha: Central South University, 2010.

    [11]

    纪慧超. 高硫铜矿高效分选技术研究[D]. 昆明: 昆明理工大学, 2020.JI H C. Research on efficient separation technology of high sulfur copper ore[D]. Kunming: Kunming University of Science and Technology, 2020.

    JI H C. Research on efficient separation technology of high sulfur copper ore[D]. Kunming: Kunming University of Science and Technology, 2020.

    [12]

    胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987.HU X G. Beneficiation of nonferrous metal sulfide ores [M]. Beijing: Metallurgical Industry Press, 1987.

    HU X G. Beneficiation of nonferrous metal sulfide ores [M]. Beijing: Metallurgical Industry Press, 1987.

  • 加载中

(4)

(8)

计量
  • 文章访问数:  631
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2022-07-02
刊出日期:  2024-06-25

目录