粉煤灰和烧结法赤泥制备地聚合物及其性能

刘诚, 周雨潇, 任浏祎, 杨思原, 包申旭. 粉煤灰和烧结法赤泥制备地聚合物及其性能[J]. 矿产综合利用, 2024, 45(5): 133-140. doi: 10.3969/j.issn.1000-6532.2024.05.019
引用本文: 刘诚, 周雨潇, 任浏祎, 杨思原, 包申旭. 粉煤灰和烧结法赤泥制备地聚合物及其性能[J]. 矿产综合利用, 2024, 45(5): 133-140. doi: 10.3969/j.issn.1000-6532.2024.05.019
LIU Cheng, ZHOU Yuxiao, REN Liuyi, YANG Siyuan, BAO Shenxu. Preparation and Properties of Fly Ash and Sintering Red Mud-based Geopolymers[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 133-140. doi: 10.3969/j.issn.1000-6532.2024.05.019
Citation: LIU Cheng, ZHOU Yuxiao, REN Liuyi, YANG Siyuan, BAO Shenxu. Preparation and Properties of Fly Ash and Sintering Red Mud-based Geopolymers[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 133-140. doi: 10.3969/j.issn.1000-6532.2024.05.019

粉煤灰和烧结法赤泥制备地聚合物及其性能

详细信息
    作者简介: 刘诚(1986-),男,研究员/博士生导师,研究方向为矿物浮选界面化学,浮选药剂,非金属矿选矿,固废综合利用
  • 中图分类号: TD989

Preparation and Properties of Fly Ash and Sintering Red Mud-based Geopolymers

  • 这是一篇陶瓷及复合材料领域的论文。为实现粉煤灰和烧结法赤泥的综合利用,本研究以粉煤灰为主要原料,烧结法赤泥作为辅料,氢氧化钠为碱激发剂协同制备地聚合物。结果表明,地聚合物较佳制备条件为:粉煤灰采取分级(细粒提取)的预处理方式,分级粒径为37 μm,细颗粒粉煤灰与烧结法赤泥质量比为7∶3 (g∶g),氢氧化钠的用量为前驱粉体的15%,此时地聚合物室温养护28 d的抗压强度可达35.52 MPa,满足中国《通用硅酸盐水泥》32.5R矿渣硅酸盐水泥的强度标准。通过XRF、XRD、ICP-OES和SEM-EDS对不同预处理方式下的原料及其所制备的地聚合物进行分析测试表明:相比于机械研磨,分级预处理更能有效改善粉煤灰的反应性,使更多活性硅铝组分参与地聚合反应;烧结法赤泥的加入可以促进富钙铝硅酸盐凝胶的形成,使地聚合物的微观结构致密化。本研究为粉煤灰和烧结法赤泥的综合利用提供了新的思路。

  • 加载中
  • 图 1  粉煤灰(a)与烧结法赤泥(b)的XRD

    Figure 1. 

    图 2  粉煤灰(a)与烧结法赤泥(b)的粒径分布

    Figure 2. 

    图 3  粉煤灰预处理方式对地聚合物抗压强度的影响

    Figure 3. 

    图 4  粉煤灰在不同预处理方式下的硅铝浸出量

    Figure 4. 

    图 5  粉煤灰在不同预处理方式下的XRD

    Figure 5. 

    图 6  粉煤灰在不同预处理方式下的粒径分布

    Figure 6. 

    图 7  烧结法赤泥对粉煤灰基地聚合物抗压强度的影响

    Figure 7. 

    图 8  氢氧化钠对粉煤灰基地聚合物抗压强度的影响

    Figure 8. 

    图 9  较佳赤泥掺量条件下地聚合物的XRD

    Figure 9. 

    图 10  地聚合物样品M1(a)和M2(b)的SEM

    Figure 10. 

    图 11  地聚合物样品M1的EDS

    Figure 11. 

    表 1  原料主要化学成分/%

    Table 1.  Main chemical composition of raw materials

    名称SiO2Al2O3Fe2O3CaOK2OTiO2SO3Na2O其他烧失量
    粉煤灰50.8425.935.504.032.631.150.540.591.637.16
    烧结法赤泥18.437.367.0436.461.222.772.052.561.6820.43
    下载: 导出CSV

    表 2  粉煤灰和烧结法赤泥的粒度分布/μm

    Table 2.  Particle size distribution of fly ash and sintered red mud

    名称D10D50D90
    粉煤灰2.23725.582104.069
    烧结法赤泥1.26913.567170.847
    下载: 导出CSV

    表 3  粉煤灰在不同预处理方式下的化学成分/%

    Table 3.  Chemical composition of fly ash at different pretreatment methods

    预处理方式SiO2Al2O3Fe2O3CaOK2OTiO2MgONa2O其他烧失量
    未经预处理50.8425.935.504.032.631.150.880.597.161.29
    研磨1 min52.8524.984.563.762.261.090.940.637.851.08
    -37 μm52.0028.045.323.392.361.250.970.645.060.97
    +37 μm51.6722.925.324.672.381.160.870.619.161.24
    下载: 导出CSV
  • [1]

    聂轶苗, 夏淼, 刘攀攀, 等. 粉煤灰基矿物聚合材料研究进展[J]. 矿产综合利用, 2022(4):123-128.NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128.

    NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128.

    [2]

    XU X Q, BAO S X, ZHANG Y M, et al. Role of particle fineness and reactive silicon-aluminum ratio in mechanical properties and microstructure of geopolymers[J]. Construction and Building Materials, 313 (2021) 125483.

    [3]

    秦磊, 包申旭, 张一敏, 等. 页岩提钒尾渣-赤泥混合煅烧制备地聚物研究[J]. 有色金属(冶炼部分), 2020(4):51-56.QIN L, BAO S X, ZHANG Y M, et al. Preparation of geopolymer from vanadium tailings and red mud by mixed calcination[J]. Nonferrous Metals(Extractive Metallurgy), 2020(4):51-56.

    QIN L, BAO S X, ZHANG Y M, et al. Preparation of geopolymer from vanadium tailings and red mud by mixed calcination[J]. Nonferrous Metals(Extractive Metallurgy), 2020(4):51-56.

    [4]

    WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in China: a critical review[J]. Journal of Cleaner Production, 2021, 289: 125136.

    [5]

    LAHOTI M, WIJAYA S F, TAN K H, et al. Tailoring sodium-based fly ash geopolymers with variegated thermal performance[J]. Cement and Concrete Composites, 2020, 107:103507.

    [6]

    郑戈弋, 周海林, 黄青叶, 等. 燃煤渣花岗岩粉基地质聚合物的制备[J]. 有色金属(冶炼部分), 2022(9):133-139.ZHENG G Y, ZHOU H L, HUANG Q Y, et al. Preparation and performance characterization of granite powder-burnt cinder-based geopolymer[J]. Nonferrous Metals(Extractive Metallurgy), 2022(9):133-139.

    ZHENG G Y, ZHOU H L, HUANG Q Y, et al. Preparation and performance characterization of granite powder-burnt cinder-based geopolymer[J]. Nonferrous Metals(Extractive Metallurgy), 2022(9):133-139.

    [7]

    NATH S K, KUMAR S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer[J]. Construction and Building Materials, 2020, 233: 117294.

    [8]

    HUANG L X, LI C L, WANG H B, et al. Research progress on comprehensive utilization of red mud[J]. Journal of Physics: Conference Series, 2021(1):12-21. doi: 10.1088/1742-6596/2009/1/012021

    [9]

    梁晓杰, 常钧, 吴昊泽. 钢渣粉粒度对复合胶凝材料水化性能的影响[J]. 矿产综合利用, 2021(3):180-186.LIANG X J, CHANG J, WU H Z. Effect of particle size of steel slag powder on hydration performance of composite cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2021(3):180-186.

    LIANG X J, CHANG J, WU H Z. Effect of particle size of steel slag powder on hydration performance of composite cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2021(3):180-186.

    [10]

    聂轶苗, 陈阳, 翟培鑫, 等. 粉煤灰中非晶相含量定量分析研究进展[J]. 矿产综合利用, 2023(1):121-126+132.NIE Y M, CHEN Y, ZHAI P X, et al. Research progress of quantitative determination of the amorphous phase in fly ash[J]. Multipurpose Utilization of Mineral Resources, 2023(1):121-126+132.

    NIE Y M, CHEN Y, ZHAI P X, et al. Research progress of quantitative determination of the amorphous phase in fly ash[J]. Multipurpose Utilization of Mineral Resources, 2023(1):121-126+132.

    [11]

    RICKARD W D A, WILLIAMS R, TEMUUJIN J, et al. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications[J]. Materials Science and Engineering, 2011, 528: 3390-3397.

    [12]

    RIESSEN A V, CHEN-TAN. Beneficiation of Collie fly ash for synthesis of geopolymer: Part 1 - Beneficiation[J]. Fuel, 106 (2013) 569-575.

    [13]

    李建伟, 杨久俊, 王晓, 等. 烧结法赤泥资源特性分析[J]. 无机盐工业, 2013, 45(3):42-44.LI J W, YANG J J, WANG X, et al. Research on resource characteristics of red mud from sintering process[J]. Inorganic Chemicals Industry, 2013, 45(3):42-44.

    LI J W, YANG J J, WANG X, et al. Research on resource characteristics of red mud from sintering process[J]. Inorganic Chemicals Industry, 2013, 45(3):42-44.

    [14]

    LEE W, DEVENTER J V. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32: 577-584.

    [15]

    DEVENTER J S, PROVIS J L, DUXSON P, et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products[J]. Journal of Hazardous Materials, 2007, 139: 506-513.

    [16]

    徐贤庆, 包申旭, 张一敏, 等. 页岩提钒尾渣基地聚合物的制备及其性能[J]. 硅酸盐通报, 2021, 40(11):3668-3676.XU X Q, BAO S X, ZHANG Y M, et al. Preparation and performance of polymer based on shale vanadium extraction tailings[J]. Bulletin of The Chinese Ceramic Society, 2021, 40(11):3668-3676.

    XU X Q, BAO S X, ZHANG Y M, et al. Preparation and performance of polymer based on shale vanadium extraction tailings[J]. Bulletin of The Chinese Ceramic Society, 2021, 40(11):3668-3676.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  322
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2023-12-07
刊出日期:  2024-10-25

目录