Cretaceous-Paleogene Paleogeographic Evolution of the Chaling-Yongxing Basin in Southeastern Hunan Province
-
摘要: 华南中新生代沉积盆地的演化历史记录了区域构造、岩浆和气候事件,对其进行研究可以为揭示区域地貌成因和沉积矿产的找矿勘探提供理论支撑。本文综合分析湘东南茶永盆地的地层对比、沉积相、控盆构造和地质事件等资料,揭示其古地理演化过程。根据茶永盆地的岩石组合、地层序列及古生物组合面貌,自下而上划分为栏垅组(K1l)、神皇山组(K1 sh )、罗镜滩组(K2l)、红花套组(K2 h )、枣市组(K2E1z )5 个地层单元;识别出坡积相、洪积相、三角洲平原相、湖泊相4 个沉积相类型,其中湖泊相细分出滨湖亚相和浅湖亚相。古流向、沉积物源和控盆断裂分析认为茶永盆地沉积古地理演化分为三个阶段:在早白垩世,盆地南缘受正断层和走滑断层控制发生断陷开始接受沉积,为近源快速堆积的坡积相和滨湖相,物源来自于南部的栖凤渡—许家洞低山丘陵区和东部的鲤鱼塘低山区;晚白垩世早期,受盆缘两侧逆冲断层控制,沉积中心向西北迁移,东高西低的地貌格局使得盆地西部成为沉降中心,为最大的湖盆扩张期,物源主要来自于盆地东侧的低山区;至晚白垩世晚期—古近纪,盆地沉降中心转移到盆地西缘并收缩形成两个孤立的湖盆,最终受逆冲断层控制萎缩消亡,物源区为西侧和北侧的低山丘陵区。茶永盆地白垩纪-古近纪沉积古地理演化为古太平洋板块和印度板块运动在华南内部的远程响应,构造体制在此期间发生了伸展—挤压—走滑的三次转变,区域发生的沉积、岩浆、火山事件和季风起源与上述板块运动存在耦合关系。Abstract: The Meso-Cenozoic sedimentary basins in South China can respond to tectonic, magmatic and climatic events, the evolution process of which can provide support for regional geomorphological genesis research and prospecting and exploration of sedimentary minerals. In this paper, based on comprehensive analysis of stratigraphic comparison, sedimentary facies, basin-controlling fault and geological events of the Chaling-Yongxing Basin (CYB) in southeastern Hunan Province, the sedimentary paleogeographical evolution was revealed. According to rock assemblage, stratigraphic sequence and paleontology of the CYB, it was divided into five stratigraphic units from bottom to top: Lanlong Formation (K1l), Shenhuangshan Formation (K1 sh ), Luojingtan Formation (K2l), Honghuatao Formation (K2 h ), and Zaoshi Formation (K2E1z ). Four sedimentary facies were identified: deluvial facies, diluvial facies, delta plain facies and lacustrine facies, among which two subfacies were subdivided: shore lake and shallow lake. On the basis of paleocurrent direction, provenance analysis and basin-controlling fault, the sedimentary paleogeographical evolution of CYB was divided into three stages: during Early Cretaceous, controlled by normal fault and strike-slip fault, the southern margin of the basin started to collapse and receive sedimentary and turned to deluvial and shore lake with rapid accumulation, and the sedimentary sources were from hills and low mountain area in the southern Qifengdu-Xujiadong and low mountain area in eastern Liyutang. At early Late Cretaceous, the sedimentary center migrated northwest-ward to result in west basin subsidence with high area in the east and low area in the west controlled by thrust faults on both side of the basin margin, forming the largest lacustrine expansion, and the sources were mainly from the low mountainous area on the eastside of the basin. At late Late Cretaceous-Paleogene, the subsidence center shifted to the western margin of the basin and was contracted to form two isolated basins, which were controlled by thrust faults and disappeared eventually. The source area was from hills and low mountain area in western and northern sides. The sedimentary paleogeographical evolution of the CYB responds to the distant effect of the Pacific plate and Indian plate subduction, and undergoes three shifts of stretching, extrusion and strike-slip. It is a coupling relationship between the sedimentary, magmatic and volcanic events in the region and monsoon origin and above tectonic movement in South China.
-
-
[1] 陈云华.2008.中国东南地区晚白垩世沉积响应与古气候[D].成都理工大学硕士学位论文,1-59.
[2] 侯可军,袁顺达.2010.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf 同位素组成及其地质意义[J].岩石学报,26(3):888-902.
[3] 湖南省地质调查院.2005.1∶25 万衡阳市幅区域地质调查报告[R].
[4] 湖南省地质调查院.2012.中国区域地质志·湖南志[M].北京:地质出版社.
[5] 湖南省革命委员会地质局区域地质测量队.1965.1∶20 万攸县幅区域地质报告[R].
[6] 湖南省革命委员会地质局区域地质测量队.1969.1∶20 万郴县幅区域地质报告[R].
[7] 湖南省革命委员会地质局区域地质测量队.1970.1∶20 万永兴幅区域地质报告[R].
[8] 黄乐清,黄建中,罗来,王先辉,刘耀荣,梁恩云,马慧英.2019.湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J].沉积学报,37(4):735-748.
[9] 贾小辉,王晓地,杨文强,牛志军.2014.粤北雪山嶂A型花岗岩的形成时代、地球化学特征及其成因[J].矿物岩石,34(3):40-49.
[10] 江瑶,刘雪敏,时志强,李建亭,王燕燕.2021.中国陆相白垩纪-古近纪(K/Pg)界线研究综述[J].桂林理工大学学报,41(3):484-496.
[11] 李佳奇,彭荣华,胡祥云,赵军.2021.湘东南永兴地区上地壳电性结构及其地质意义[J/OL].地球科学.https://kns.cnki.net/kcms/detail/42.1874.P.20211223.1041.010.html.
[12] 刘飞宇,巫建华,刘帅.2009.赣杭带早白垩世粗面岩锆石SHRIMP U-Pb 年龄及其意义[J].东华理工大学学报(自然科学版),32(4):330-335.
[13] 刘芮岑,李祥辉,胡修棉.2018.湖南茶陵盆地晚白垩世古降水氧同位素[J].沉积学报,36(6):1169-1176.
[14] 刘芮岑.2018.湖南茶陵盆地晚白垩世—古新世古气候分析[D].南京大学硕士学位论文,1-65.
[15] 骆满生,卢隆桥,贾建,王盛栋,徐亚东,何卫红.2014.中国中生代沉积盆地演化[J].地球科学——中国地质大学学报,39(8):954-976.
[16] 任建业,李思田.2000.西太平洋边缘海盆地的扩张过程和动力学背景[J].地学前缘,7(3):203-213.
[17] 舒良树,周新民,邓平,余心起,王彬,祖辅平.2004.中国东南部中、新生代盆地特征与构造演化[J].地质通报,23(9-10):876-884.
[18] 宋博文,张克信,徐亚东,侯亚飞,季军良,骆满生.2020.中国古近纪构造-地层区划及地层格架[J].地球科学,45(12):4352-4369.
[19] 童永生,王元青,李茜.2006.湖南衡东岭茶地区古近纪地层划分与中国早始新世哺乳动物群[J].地质论评,52(2):153-162+290.
[20] 王九一,刘成林,王春连,余小灿,颜开,高超.2021.晚白垩世—古近纪华南蒸发岩矿床形成的构造和气候耦合控制[J].地质学报,95(7):2041-2051.
[21] 肖本夫,肖和平,祁玉萍,敬少群,李凤.2019.基于DEM的少震、弱震区构造地貌特征及演化分析——以湖南省茶陵—永兴盆地为例[J].华南地震,39(2):147-155.
[22] 徐先兵.2022.南岭地区白垩纪至古近纪陆相盆地及其对气候变化与构造域转换的制约[J]. 华南地质,38(4):569-582.
[23] 徐亚东,梁银平,江尚松,骆满生,季军良,张宗言,韦一,宋博文.2014.中国东部新生代沉积盆地演化[J].地球科学,39(8):1079-1098.
[24] 张清如.2009.中南地区白垩纪—新近纪孢粉化石组合序列的初步总结[M].武汉:中国地质大学出版社.
[25] 张显球,李茜.2010.湖南衡阳盆地岭茶地区古近纪介形类动物群[J].古生物学报,49(4):487-501.
[26] 张岳桥,董树文,李建华,崔建军,施炜,苏金宝,李勇.2012.华南中生代大地构造研究新进展[J]. 地球学报,33(3):257-279.
[27] 赵小明,牛志军,张开明,吴年文,彭练红,龙文国,魏运许,安志辉,胡昆.2017.中南地区地层综合区划[J].地层学杂志,41(3):235-255.
[28] 赵振华,包志伟,张伯友.1998.湘南中生代玄武岩类地球化学特征[J].中国科学(D辑:地球科学),(S2):7-14.
[29] 中南矿冶学院地质系红层科研小组.1975.湖南茶陵—永兴白垩纪—第三纪红色盆地岩相柱状剖面图说明书[R].
[30] 朱宁,徐亚东,武瑞,韩凤禄,黄乐清,童潜明.2020.湖南株洲天元区晚白垩世恐龙化石层时代及沉积环境[J].地球科学,45(3):752-763.
[31] Cao K. 2018. Cretaceous terrestrial deposits in China[J]. China Geology, 1(3): 402-414.
[32] Cao X Z, Flament N, Li S Z, Müller R D. 2021. Spatio-temporal evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South China Block[J]. Earth-Science Reviews, 217: 103605.
[33] Chen J Y, Yang J H, Zhang J H, Sun J F, Wilde S A. 2013. Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: Zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence[J]. Lithos, 162-163: 140-156.
[34] Chung S L, Cheng H, Jahn B, O'Reilly S Y, Zhu B Q. 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening[J]. Lithos, 40(2-4): 203-220.
[35] Coward M P, Butler R W H, Khan M A, Knipe R J. 1987. The tectonic history of Kohistan and its implications for Himalayan structure[J]. Journal of the Geological Society, 144(3): 377-391.
[36] Dai J, Sun B N. 2018. Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China[J]. Cretaceous Research, 85: 232-242.
[37] Du B X, Sun B N, Zhang M Z, Yang G L, Xing L T, Tang F J, Bai Y X. 2016. Atmospheric palaeo-CO2 estimates based on the carbon isotope and stomatal data of Cheirolepidiaceae from the Lower Cretaceous of the Jiuquan Basin, Gansu Province[J]. Cretaceous Research, 62: 142-153.
[38] Fang X M, Song C H, Yan M D, Zan J B, Liu C L, Sha J G, Zhang W L, Zeng Y Y, Wu S, Zhang D W. 2016. Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites[J]. Gondwana Research, 37: 110-129.
[39] Gan C S, Wang Y J, Zhang Y Z, Zhang J. 2017. The earliest Jurassic A-type granite in the Nanling Range of southeastern South China: petrogenesis and geological implications[J]. International Geology Review, 59(3): 274-292.
[40] Gorczyk W, Willner A P, Gerya T V, Connolly J A D, Burg J P. 2007. Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling[J]. Physics of the Earth and Planetary Interiors, 163(1-4):209-232.
[41] Guo F, Fan W M, Li C W, Zhao L, Li H X, Yang J H. 2012. Multi-stage crust-mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces[J]. Lithos, 150: 62-84.
[42] Haggart JW, Matsukawa M, Ito M. 2006. Paleogeographic and paleoclimatic setting of Lower Cretaceous basins of East Asia and western North America, with reference to the nonmarine strata[J]. Cretaceous Research, 27(2): 149-167.
[43] Hasegawa H, Tada R, Jiang X, SuganumaY, Imsamut S, Charusiri P, Ichinnorov N, KhandY. 2011. Drastic shrinking of the Hadley circulation during the mid-Cretaceous supergreenhouse[J].Climate of the Past Discussions, 7(1):119-151.
[44] Hui G G, Li S Z, Li X Y, Guo L L, Suo Y H, Somerville I D, Zhao S J, Hu M Y, Lan H Y, Zhang J. 2016. Temporal and spatial distribution of Cenozoic igneous rocks in the South China Sea and its adjacent regions: implications for tectono-magmatic evolution[J]. Geological Journal, 51: 429-447.
[45] Li B, Jiang S Y, Zhang Q, Zhao H X, Zhao K D. 2015. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism[J]. Tectonophysics, 661: 136-155.
[46] Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136.
[47] Li J H, ZhangYQ, Dong SW, LiHL. 2012. Late Mesozoic-Early Cenozoic deformation history of theYuanma Basin, central South China[J].Tectonophysics, 570-571: 163-183.
[48] Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J] Lithos, 96(1-2): 186-204.
[49] Li X Y, Zhang R, Zhang Z S, Yan Q. 2018. Do climate simulations support the existence of East Asian monsoon climate in the Late Eocene?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 509: 47-57.
[50] Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China[J]. Economic Geology, 104(2): 303-321.
[51] Liu L, Xu X S, Xia Y. 2014. Cretaceous Pacific plate movement beneath SE China: Evidence from episodic volcanism and related intrusions[J]. Tectonophysics, 614: 170-184.
[52] Liu Q, Yu J H, Wang Q, Su B, Zhou M F, Xu H, Cui X. 2012. Ages and geochemistry of granites in the Pingtan-Dongshan Metamorphic Belt, Coastal South China: New constraints on Late Mesozoic magmatic evolution[J]. Lithos, 150: 268-286.
[53] Meng L F, Li Z X, Chen H L, Li X H, Wang X C. 2012. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model[J]. Lithos, 132-133: 127-140.
[54] Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31(4): 357-396.
[55] Peacock S M, Wang K L. 1999. Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan[J]. Science, 286(5441): 937-939.
[56] Qin Y, Cai Y F, Fu W, Han Z X, Liu P F, Lao C L, Zhao Y S, Han Z C, Zhou Y. 2022. Mineralogical, Geochronological, and Geochemical Characteristics of Early Cretaceous Granite in South China: Implications for Tectonic Evolution and REE Mineralization[J]. Minerals, 12(10): 1308.
[57] Quan C, Liu Y S, Utescher T. 2011. Paleogene evolution of precipitation in northeastern China supporting the middle Eocene intensification of the East Asian monsoon[J]. Palaios, 26(11): 743-753.
[58] Quan C, Liu Z H, Utescher T, Jin J H, Shu J W, Li Y X, Liu Y S. 2014. Revisiting the Paleogene climate pattern of East Asia: a synthetic review[J]. Earth-Science Reviews, 139: 213-230.
[59] Quan C, Sun C L , Sun YW, Sun G. 2009. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles[J]. Cretaceous Research, 30(2): 424-428.
[60] Ren J Y, Tamak K, Li S T, Zhang J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 344(3-4): 175-205.
[61] Shu L S, Zhou X M, Deng P, Wang B, Jiang S Y, Yu J H, Zhao X X. 2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis[J]. Journal of Asian Earth Sciences, 34(3): 376-391.
[62] Tang J, Xu W L, Wang F, Ge W C. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia[J]. Science China Earth Sciences, 61(5): 527-559.
[63] Wan C B, Wang D H, Zhu Z P, Quan C. 2011. Trend of Santonian (Late Cretaceous) atmospheric CO2 and global mean land surface temperature: Evidence from plant fossils[J]. Science China: Earth Sciences, 54(9): 1338-1345.
[64] Wang J Y, Li X H, Li L Q, Wang Y D. 2022. Cretaceous climate variations indicated by palynoflora in South China[J]. Palaeoworld, 31(3): 507-520.
[65] Wang Y D, Huang C M, Sun B N, Quan C, Wu J Y, Lin Z C. 2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate[J]. Earth-Science Reviews, 129(1): 136-147.
[66] Wang Y, Wang Y J, Li S B, Seagren E, Zhang Y Z, Zhang P Z, Qian X. 2020. Exhumation and landscape evolution in eastern South China since the Cretaceous: New insights from fission-track thermochronology[J]. Journal of Asian Earth Sciences, 191: 104239.
[67] Wong J, Sun M, Xing G F, Li X H, Zhao G C, Wong K, Wu F Y. 2011. Zircon U-Pb and Hf isotopic study of Mesozoic felsic rocks from eastern Zhejiang, South China: Geochemical contrast between the Yangtze and Cathaysia blocks[J]. Gondwana Research, 19(1): 244-259.
[68] Wong J, Sun M, Xing G F, Li X H, Zhao G C, Wong K, Yuan C, Xia X P, Li L M, Wu F Y. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125–100 Ma and its tectonic significance for South China[J]. Lithos, 112(3-4): 289-305.
[69] Wu C H, Rodriguez-Lopez J P, Santosh M. 2022. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: The formation of Cretaceous desert basins in east Asia[J]. Geoscience Frontiers, 13(6): 101454.
[70] Wu F Y, Ji W Q, Sun D H, Yang Y H, Li X H. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 150: 6-25.
[71] Xie J C, Yang X Y, Sun W D, Du J G. 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China: Implications for the tectonic settings[J]. Lithos, 150: 49-61.
[72] Xie Y L, Wu F L, Fang X M, Zhang D W, Zhang W L. 2020. Early Eocene southern China dominated by desert: Evidence from a palynological record of the Hengyang Basin, Hunan Province[J]. Global and Planetary Change, 195: 103320.
[73] Xu X B, Liang C H, Xu Y D. 2021. Kinematic analysis of fault-slip data in the Nanling Tectonic Belt and Cretaceous to Paleogene tectonic evolution of the Central South China Block[J]. Journal of Asian Earth Sciences, 221: 104951.
[74] Yang S Y, Jiang S Y, Jiang Y H, Zhao K D, Fan H H. 2011. Geochemical, zircon U-Pb dating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China[J]. Mineralogy and Petrology, 101(1-2): 21-48.
[75] Yang S Y, Jiang S Y, Zhao K D, Jiang Y H, Ling H F, Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China[J]. Lithos, 150: 155-170.
[76] Yang W, Zhang H F. 2012. Zircon geochronology and Hf isotopic composition of Mesozoic magmatic rocks from Chizhou, the Lower Yangtze Region: Constraints on their relationship with Cu-Au mineralization[J]. Lithos, 150: 37-48.
[77] Yang Y T. 2013. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 126: 96-115.
[78] Ye Q, Mei L F, Shi H S, Camanni G, Shu Y, Wu J, Yu L, Deng P, Li G. 2018. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data[J]. Earth-Science Reviews, 187: 186-204.
[79] Yin A. 2010. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325.
[80] Yu X C, Liu C L, Wang C L, Li F, Wang J Y. 2020. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in Central China[J]. Marine and Petroleum Geology, 117: 104390.
[81] Zhang L, Wang C, Wignall P B, Kluge T, Wan X Q, Wang Q, Gao Y. 2018. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 46(3): 271-274.
[82] Zhang Z S, Wang H J, Guo Z T, Jiang D B. 2007. Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China[J]. Earth and Planetary Science Letters, 257(3-4): 622-634.
[83] Zhang Z S, Flatøy F, Wang H J, Bethke I, Bentsen M, Guo Z T. 2012. Early Eocene Asian climate dominated by desert and steppe with limited monsoons[J]. Journal of Asian Earth Sciences, 44: 24-35.
[84] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A Response to Tectonic Evolution[J]. Episodes, 29(1): 26-33.
[85] Zhu C G, Meng J, Hu Y Y, Wang C S, Zhang J. 2019. East-Central Asian Climate Evolved with the Northward Migration of the High Proto-Tibetan Plateau[J]. Geophysical Research Letters, 46(14): 8397-8406.
-
计量
- 文章访问数: 1081
- PDF下载数: 90
- 施引文献: 0