扬子陆块北缘古-中元古代构造格架:来自马鞍山岩群物源示踪的启示

徐大良, 邓新, 彭练红, 张维峰, 刘浩, 金鑫镖, 彭旎, 金巍. 2023. 扬子陆块北缘古-中元古代构造格架:来自马鞍山岩群物源示踪的启示. 华南地质, 39(2): 235-258. doi: 10.3969/j.issn.2097-0013.2023.02.005
引用本文: 徐大良, 邓新, 彭练红, 张维峰, 刘浩, 金鑫镖, 彭旎, 金巍. 2023. 扬子陆块北缘古-中元古代构造格架:来自马鞍山岩群物源示踪的启示. 华南地质, 39(2): 235-258. doi: 10.3969/j.issn.2097-0013.2023.02.005
XU Da-Liang, DENG Xin, PENG Lian-Hong, ZHANG Wei-Feng, LIU Hao, JIN Xin-Biao, PENG Ni, JIN Wei. 2023. Paleoproterozoic to Mesoproterozoic Tectonic Framework on the Northern Yangtze Block: Inspirations from provenance of the Ma’anshan Group. South China Geology, 39(2): 235-258. doi: 10.3969/j.issn.2097-0013.2023.02.005
Citation: XU Da-Liang, DENG Xin, PENG Lian-Hong, ZHANG Wei-Feng, LIU Hao, JIN Xin-Biao, PENG Ni, JIN Wei. 2023. Paleoproterozoic to Mesoproterozoic Tectonic Framework on the Northern Yangtze Block: Inspirations from provenance of the Ma’anshan Group. South China Geology, 39(2): 235-258. doi: 10.3969/j.issn.2097-0013.2023.02.005

扬子陆块北缘古-中元古代构造格架:来自马鞍山岩群物源示踪的启示

  • 基金项目:

    中国地质调查局项目(DD20221634, DD20160030)

详细信息
    作者简介: 徐大良(1983—),男,高级工程师,从事基础地质调查与研究工作,E-mail:xdl2003geo@163.com
    通讯作者: 彭练红(1966—),男,正高级工程师,从事区域大地构造研究,E-mail:245737309@qq.com
  • 中图分类号: P534.3;P544

Paleoproterozoic to Mesoproterozoic Tectonic Framework on the Northern Yangtze Block: Inspirations from provenance of the Ma’anshan Group

More Information
    Corresponding author: PENG Lian-Hong
  • 识别并研究扬子陆块北缘古-中元古代的岩浆-变质-沉积事件,是全面理解该陆块古-中元古代构造演化的基础,也是重建其在Columbia 超大陆向Rodinia 超大陆转变阶段角色和位置的前提。本文对扬子陆块北缘桐柏地区马鞍山岩群的3 件样品进行了碎屑锆石U-Pb 定年和原位Lu-Hf 同位素分析。结果显示,该岩群下部a 岩组片岩中最年轻的单颗粒锆石谐和年龄为1725±30 Ma,上部b 岩组大理岩中最年轻的一批锆石谐和年龄为1626 ~ 1606 Ma,大致分别限定了其最早沉积时代,表明扬子陆块北缘桐柏地区可能存在中元古代早中期沉积地层。马鞍山岩群的碎屑锆石年龄谱范围是2643 ~1606 Ma,呈现出显著的1820 Ma单峰频谱特征,其潜在物源区可能主要来自于扬子陆块北缘外部的桐柏-大别-苏鲁地区(现已卷入中生代高压-超高压变质带)。现有资料指示,扬子陆块北缘在古-中元古代时期可划分为内部和外部两个大地构造单元,二者在古元古代呈现出截然不同的构造演化过程,各单元内中元古代早中期地层的物源区显著不同,可能分别靠近伸展环境的超大陆核部和汇聚环境的超大陆边部。
  • 加载中
  • [1]

    邓奇,汪正江,王剑,崔晓庄,马龙,熊小辉.2017.扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约[J].地质学报,91(7):1454-1466.

    [2]

    耿元生,旷红伟,杜利林,柳永清,赵太平.2019.从哥伦比亚超大陆裂解事件论古/中元古代的界限[J].岩石学报,35(8):2299-2324.

    [3]

    耿元生,旷红伟,柳永清,杜利林.2017.扬子地块西、北缘中元古代地层的划分与对比[J].地质学报,91(10):2151-2174.

    [4]

    洪吉安,马斌,黄琦.2009.湖北枣阳大阜山镁铁/超镁铁杂岩体与金红石矿床成因[J].地质科学,44(1):231-244.

    [5]

    胡娟,刘晓春,曲玮,崔建军.2012.桐柏造山带古元古代变质基性岩的锆石U-Pb 年龄及其地质意义[J].地球学报,33(3):305-315.

    [6]

    胡正祥,刘早学,张焱林,毛新武,冉瑞生,廖宗明,刘成新.2012.扬子地块北缘前南华纪神农架群底界的厘定及其地质意义[J].资源环境与工程,26(3):201-208.

    [7]

    孔令耀,郭盼,万俊,刘成新,王晶,陈超.2022.大别造山带中元古代变沉积岩碎屑锆石U-Pb 年代学与Hf 同位素特征及其地质意义[J].地球科学,47(4):1333-1348.

    [8]

    孔令耀,毛新武,陈超,邓乾忠,张汉金,杨青雄,李琳静,李启文.2017.扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义[J].地球科学,42(4):485-501.

    [9]

    孔庆波.2009.苏鲁地体古元古代花岗质片麻岩锆石的U-Pb定年、REE 和Lu-Hf 同位素特征[J]. 地质通报,28(1):51-62.

    [10]

    李怀坤,田辉,周红英,张健,刘欢,耿建珍,叶丽娟,相振群,瞿乐生.2016.扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比:锆石SHRIMPU-Pb 年龄及Hf同位素证据[J].地学前缘,23(6):186-201.

    [11]

    李怀坤,张传林,相振群,陆松年,张健,耿建珍,瞿乐生,王志先.2013.扬子克拉通神农架群锆石和斜锆石U-Pb 年代学及其构造意义[J].岩石学报,29(2):673-697.

    [12]

    刘福来,施建荣,刘建辉,叶建国,刘平华,王舫.2011.北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代[J].岩石学报,27(4):1075-1084.

    [13]

    刘浩,徐大良,魏运许,邓新,彭练红.2017.湖北大洪山打鼓石群沉积时限——来自碎屑锆石U-Pb 年龄的证据[J].地质通报,36(5):715-725.

    [14]

    刘利双,刘福来,冀磊,王伟,王舫,蔡佳,刘平华.2018.北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义[J].岩石学报,34(6):1557-1580.

    [15]

    刘锐, 孙唯衡, 代吉祥, 邹院兵, 陈松, 蒋之飞, 刘兴平, 杨振.2023.鄂东北地区典型锰矿床锆石U-Pb年代学:对锰成矿时代的制约[J].大地构造与成矿学.https://doi.org/10.16539/j.ddgzyckx.2023.01.101

    [16]

    邱啸飞,陈伟雄,徐大良,赵小明,童喜润.2022.扬子陆核崆岭杂岩太古宙地壳演化[J].华南地质,38(1):56-66.

    [17]

    唐俊,郑永飞,吴元保,查向平,周建波.2004.胶东地块东部变质岩锆石U-Pb 定年和氧同位素研究[J].岩石学报,20(5):1039-1062.

    [18]

    涂城,张少兵,苏克,梁婷.2021.肥东杂岩锆石U-Pb 年龄和Lu-Hf 同位素:对扬子克拉通统一结晶基底的限制[J].地球科学,46(5):1630-1643.

    [19]

    王伟,卢桂梅,黄思访,薛尔堃.2019.扬子陆块古-中元古代地质演化与Columbia 超大陆重建[J].矿物岩石地球化学通报,38(1):30-52+203.

    [20]

    肖志斌.2012.中元古代扬子北缘神龙架地区沉积岩碎屑锆石研究[D].西北大学硕士学位论文,1-64.

    [21]

    徐大良,刘浩,魏运许,彭练红,邓新.2016.扬子北缘神农架地区郑家垭组碎屑锆石年代学及其构造意义[J].地质学报,90(10):2648-2660.

    [22]

    徐大良,彭练红,邓新,徐扬,刘浩.2023a.大别山南缘翁门杂岩中太古代-古元古代岩浆构造热事件的识别及其地质意义[J].地球科学,1-28(待刊).

    [23]

    徐大良,邓新,彭练红,田洋,金巍,金鑫镖.2023b.大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J/OL].地学前缘,30(4):299-316.

    [24]

    杨阳,刘贻灿,李远.2022.大别山宿松变质带~1.38 Ga 花岗质岩浆作用的厘定及其对Columbia 超大陆裂解的启示[J/OL].大地构造与成矿学.https://doi.org/10.16539/j.ddgzyckx.2022.04.008

    [25]

    尹须伟,徐扬,杨坤光,邓新,魏运许,刘雨.2021.红安造山带南缘古元古代杂岩体的发现对扬子板块古元古代造山事件的约束[J].岩石学报,37(7):2123-2161.

    [26]

    赵小明,安志辉,邱啸飞,胡正祥.2022.扬子克拉通北缘神农架-崆岭地区中-新元古代地层厘定——兼论“神农架群底界”[J].华南地质,38(1):46-55.

    [27]

    Ayers J C, Dunkle S, Gao S, Miller C F. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite[J]. Chemical Geology, 186(3-4): 315-331.

    [28]

    Berry R F, Jenner G A, Meffre S, Turbrett M N. 2001. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania ?[J]. Earth and Planetary Science Letters, 192(2): 207-222.

    [29]

    Cawood P A, Hawkesworth C J, Dhuime B. 2012. Detrital zircon record and tectonic setting[J]. Geology, 40(10): 875-878.

    [30]

    Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 449(1): 118-126.

    [31]

    Cawood P A, Wang W, Zhao T Y, Xu Y J, Mulder J A,Pisarevsky S A, Zhang L M, Gan C S, He H Y, Liu H C, Qi L, Wang Y J, Yao J L, Zhao G C, Zhou M F, Zi J W. 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia[J]. Earth Science Reviews, 204: 103169.

    [32]

    Chen D G, Deloule E, Cheng H, Xia Q K, Wu Y B. 2003. Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses[J]. Chinese Science Bulletin, 48(16): 1670-1678.

    [33]

    Chen Q, Sun M, Zhao G C, Zhao J H, Zhu W L, Long X P, Wang J. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 326-327:1-18.

    [34]

    Chen Z H, Xing G F. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China[J]. Precambrian Research, 279: 81-90.

    [35]

    Coutts D S, Matthews W A, Hubbard S M. 2019. Assessment of widely used methods to derive depositional ages from detrital zircon populations[J]. Geoscience Frontiers, 10:1421-1435.

    [36]

    DickinsonWR, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letter, 288(1-2):115-125.

    [37]

    Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics[J]. Precambrian Research, 270: 246-266.

    [38]

    Guo J W, Zheng J P, Ping X Q, Wan Y S, Li Y H, Wu Y B, Zhao J H, Wang W. 2018. Paleoproterozoic porphyries and coarse-grained granites manifesting a vertical hierarchical structure of Archean continental crust beneath the Yangtze Craton[J]. Precambrian Research, 314: 288-305.

    [39]

    Han Q S, Peng S B, Polat A, Kusky T. 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton[J]. Lithos, 342-343: 513-529.

    [40]

    Hu J, Liu X C, Chen L Y, Qu W, Li H K, Geng J Z. 2013. A ~ 2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58(Z2): 3564-3579.

    [41]

    Hu Z C, Liu Y S, Gao S, Liu W G, Yang L, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.

    [42]

    Huang Y, Wang X L, Li J Y, Wang D, Jiang C H, Li L S. 2021. Early Neoproterozoic tectonic evolution of northern Yangtze Block: Insights from sedimentary sequences from the Dahongshan area[J]. Precambrian Research, 365: 106382.

    [43]

    Jian D C, Williams S E, Yu S, Zhao G C. 2022. Quantifying the link between the detrital zircon record and tectonic settings[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB024606.

    [44]

    Jiao S J, Brown M, Mitchell R N, Chowdhury P, Clark C, Chen L, Chen Y, Korhonen F, Huang G Y, Guo J H. 2023. Mechanisms to generate ultrahigh-temperature metamorphism[J]. Nature Reviews Earth and Environment, doi: 10.1038/s43017-023-00403-2.

    [45]

    Lei H C, Xu H J, Xiang H. 2020. Basement evolution of the Sulu orogenic belt: Constraints on zircon U-Pb ages and trace elements from the Weihai gneisses[J]. Geological Journal, 55(4): 2646-2661.

    [46]

    Li J Y, Wang X L, Wang D, Du D H, Yu J H, Gu Z D, Huang Y, Li L S. 2021. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction-accretion[J]. Precambrian Research, 355: 106081.

    [47]

    Li X P, Zheng Y F, Wu Y B, Chen F K, Gong B, Li Y G. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating[J]. Contributions to Mineralogy and Petrology, 148(4): 443-470.

    [48]

    Li Y H, Zheng J P, Ping X Q, Xiong Q, Xiang L, Zhang H. 2018. Complex growth and reworking processes in the Yangtze cratonic nucleus[J]. Precambrian Research, 311: 262-277.

    [49]

    Li Z X, Bogdanova S V, Collins A S, Davidson A, Waele B D, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160(1-2): 179-210.

    [50]

    Liou J G, Tsujimori T, Chu W, Zhang R Y, Wooden J L. 2006. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane[J]. Mineralogy and Petrology, 88(1-2):207-226.

    [51]

    Liu X C, Jahn B M, Cui J J, Li S Z, Wu Y B, Li X H. 2010. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China: Implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone[J]. Lithos, 119(3-4): 211-237.

    [52]

    Liu X C, Jahn B M, Dong S W, Lou Y X, Cui J J. 2008. High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism[J]. Lithos, 105(3-4): 301-318.

    [53]

    Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 25(1): 4-29.

    [54]

    Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S, Yuan H L. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140-151.

    [55]

    Qiu X F, Ling W L, Liu X M, Kusky T, Berkana W, Zhang Y H, Gao Y J, Lu S S, Kuang H, Liu C X. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 191(3-4):101-119.

    [56]

    Tang J, Zheng Y F, Wu Y B, Gong B, Zha X P, Liu X M. 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J]. Precambrian Research, 161(3-4): 389-418.

    [57]

    Tucker R T, Roberts E M, Hu Y, Kemp A I S, Salisbury S W. 2013. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia’s late Cretaceous dinosaur fanuas[J]. Gondwana Research, 24(2):767-779.

    [58]

    Wang J, Deng Q, Wang Z J, Qiu Y S, Duan T Z, Jiang X S, Yang Q X. 2013. New evidences for sedimentary attributes and timing of the“Macaoyuan conglomerates”on the northern margin of the Yangtze Block in southern China[J]. Precambrian Research, 235:58-70.

    [59]

    Wang K, Dong S W. 2019. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: Possible collisional granitic magmatism in the Zhongxiang Complex, South China[J]. Precambrian Research, 334: 105452.

    [60]

    Wang X, Guo J W, Tao W, Jiang L L, Deng J L, Ma C Q. 2021. Paleoproterozoic tectonic evolution of the Yangtze Craton: Evidence from magmatism and sedimentation in the Susong area, South China[J]. Precambrian Research, 365: 106390.

    [61]

    Wang Z J, Wang J, Deng Q, Du Q D, Zhou X L, Yang F, Liu H. 2015. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui Complex, South China[J]. Precambrian Research, 263: 157-173.

    [62]

    Wu Y B, Gao S, Zhang H F, Zheng J P, Liu X C, Wang H, Gong H J, Zhou L, Yuan H L. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 200-203: 26-37.

    [63]

    Wu Y B, Zheng Y F, Gao S, Jiao W F, Liu Y S. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen[J]. Lithos, 101(3-4): 308-322.

    [64]

    Wu Y B, Zheng Y F, Zhao Z F, Gong B, Liu X M, Wu F Y. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie Orogen[J]. Geochimica et Cosmochimica Acta, 70(14): 3743-3761.

    [65]

    Xiang H, Zhang Z M, Lei H C, Qi M, Dong X, Wang W, Lin Y H. 2014. Paleoproterozoic ultrahigh-temperature politic granulites in the northern Sulu Orogen: Constraints from petrology and geochronology[J]. Precambrian Research, 254:273-289.

    [66]

    Xie X F, Yang Z N, Zhang H, Polat A, Xu Y, Deng X. 2021. Finding of Ca. 1.6 Ga detrital zircons from the Mesoproterozoic Dagushi group, northern margin of the Yangtze Block[J]. Minerals, 11(4):371.

    [67]

    Xiong Q, Zheng J P, Yu C M, Su Y P, Tang H Y, Zhang Z H. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54(3): 436-446.

    [68]

    Xu H J, Lei H C, Xiong Z W, Zhang J F. 2019. Paleoproterozoic ultrahigh-temperature granulite-facies metamorphism in the Sulu orogen, eastern China: Evidence from zircon and monazite in the pelitic granulite[J]. Precambrian Research, 333:105430.

    [69]

    Yang J S, Wooden J L, Wu C L, Liu F L, Xu Z Q, Shi R D, Katayama I, Liou J G, Maruyama S. 2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China[J]. Journal of Metamorphic Geology, 21(6): 551-560.

    [70]

    Yuan X Y, Niu M L, Cai Q R, Zhu G, Wu Q, Li X C, Sun Y, Li C, Qian T. 2022. The nature of Paleoproterozoic basement in the northern Yangtze and its geological implication[J]. Precambrian Research, 378: 106761.

    [71]

    Zhang L, Liu H J, Zhang S B, He Q, Li Z X, Liang T. 2022. Tectonic switch of the north Yangtze Craton at ca. 2.0 Ga: Implications for its position in Columbia supercontinent[J]. Precambrian Research, 381:106842.

    [72]

    Zhang Q Q, Gao X Y, Zhang S B, Zheng Y F. 2020. Paleoproterozoic tectonic evolution of the northern Yangtze craton from oceanic subduction through continental collision to continental rifting: Geochronological and geochemical records of metabasites from the Tongbai orogeny in central China [J]. Precambrian Research, 350: 105920.

    [73]

    Zhao G C, Sun M, Wilde S A, Li S Z. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth Science Reviews, 67(1-2): 91-123.

    [74]

    Zhao T, Zhu G, Wu Q, Hu R M, Wu Y H, Xu Z Y, Ye J. 2021. Evidence for discrete Archean microcontinents in the Yangtze Craton[J]. Precambrian Research, 361: 106259.

    [75]

    Zhao X M, Qiu X F, An Z H, Wu N W, Tian L, Wei Y X, Jiang T. 2019. Redefinition of Early Mesoproterozoic (1800-1600 Ma) stratigraphy in the northern Kongling area, China: The nucleus of Yangtze Craton and its tectonic significance[J]. China Geology, 2(2):157-168.

    [76]

    Zhou G Y, Wu Y B, Fu B, Li L, Zhang W X, Zhang Y L. 2020. Genesis of baddeleyite and high δ18O zircon in impure marble from the Tongbai orogen, Central China: insights from petrochronology and Hf-O isotope compositions[J]. Contributions to Mineralogy and Petrology, 175(8):1-20.

    [77]

    Zhou G Y, Wu Y B, Wang H, Qin Z W, Zhang W X, Zheng J P, Yang S H. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 292: 57-74.

    [78]

    Zong K Q, Klemd R, Yuan Y, He Z Y, Guo J L, Shi X L, Liu Y S, Hu Z C, Zhang Z M. 2017. The assembly of Rodinia: The Correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 290: 32-48.

  • 加载中
计量
  • 文章访问数:  1119
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2023-06-06
修回日期:  2023-06-12

目录