Application of Time Series InSAR Technology in Early Identification of Geological Hazards in the Northern Part of Central Development Zone of Nepal
-
摘要: 尼泊尔中央发展区地质灾害频发且危害严重,其东北部山区沟壑纵横,易发山体滑坡与泥石流,西南平原区人类工程活动强烈,极易引发地面沉降。因该区地处境外,人工调查难度较大,适合采用以InSAR技术为主的综合遥感调查方法。为了探索适合该区的地质灾害InSAR 识别方法,采用PS-InSAR 和SBAS-InSAR 两种时序InSAR 技术处理了2018 ~ 2020 年20 期Sentinel-1数据。利用获得的高形变速率区域和高分辨率光学遥感影像,共识别了尼泊尔中央发展区北部27 处潜在的地质灾害隐患点。研究结果表明,PS-InSAR 和SBAS-InSAR两种技术在区域形变速率的监测上具有一致性,形变速率区间在-40 ~ 35 mm/a左右;在研究区这类平原和山区结合的地区,SBAS-InSAR技术能更全面、有效地识别地质灾害隐患点;结合典型隐患点的时序监测曲线,发现区内滑坡隐患的形变特征与季风降雨密切相关,而地面沉降则与人类活动和地下水超采有关。研究结果证明了时序InSAR技术在尼泊尔中央发展区灾害隐患早期识别中的可行性,对于同类地区后续的地质灾害防治工作具有重要的科学支持作用。Abstract: Geological disasters occur frequently and have serious threat in Central Development Zone of Nepal, the northeastern mountainous area of which is riddled with gullies, prone to landslides and mudslides, while the southwestern plains are subject to intense human engineering activities, which can easily cause land subsidence. As the area is located overseas, it is not suitable to do manual survey but adopt the comprehensive remote sensing survey method based on InSAR technology. In order to explore the InSAR identification method of geological hazard in the north of the area, two time-series InSAR technologies, PS-InSAR and SBAS-InSAR, are selected to process the Sentinel-1 data of 20 periods from 2018 to 2020. With the obtained high deformation rate area as the target area, and combined with high resolution optical remote sensing images, 27 geological hazards are identified in the north of Nepal Central Development Region. The results show that there is a certain consistency between PS InSAR and SBAS InSAR in monitoring deformation rate in the region, with a deformation rate range of about - 40~35 mm/a; SBAS-InSAR technology has a more comprehensive and effective effect on identifying geological hazards in such areas where plains and mountains are combined; According to the time series monitoring curve of typical hidden danger points, it is found that the deformation characteristics of all landslide hidden dangers in the area are significantly related to monsoon rainfall, and land subsidence is related to human activities and groundwater overexploitation. The research results prove the feasibility of the time-series InSAR technology in the early identification of overseas geological hazards, which has an important scientific support for the follow-up geological disaster prevention and control of the similar area.
-
Key words:
- geological hazards /
- InSAR /
- hazard identification /
- Central Development Zone of Nepal
-
-
[1] 戴真印, 刘岳霖, 张丽平, 张贤.2023.基于改进时序InSAR技术的东莞地面沉降时空演变特征[J].中国地质灾害与防治学报, 34(1):58-67.
[2] 何倩.2022.联合PS 和DS的时序InSAR 地表沉降监测方法研究[D].中国矿业大学博士学位论文.
[3] 蒋宁, 苏凤环, 徐京华, 葛永刚, 刘智.2020.尼泊尔地震重灾区同震滑坡的分形特征及其原因分析[J].山地学报, 38(5):699-709.
[4] 李德仁, 廖明生, 王艳.2004.永久散射体雷达干涉测量技术[J].武汉大学学报(信息科学版), 29(8):664-668.
[5] 刘媛媛, 晏霞, 夏元平, 赵振宇.2023.利用渐进式SBAS-In-SAR 监测分析北京平原地区地表形变[J].大地测量与地球动力学, 43(3):239-245.
[6] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康.2021. Sentinel-1A京津冀平原区2016—2018 年地面沉降InSAR 监测[J].自然资源遥感, 33(4):55-63.
[7] 孙国庆, 陈方, 于博, 王宁. 2020. 2001—2017 年尼泊尔中部地区滑坡变化及其影响因素[J].中国科学院大学学报, 37(3):308-316.
[8] 田颖颖.2020. 2015 年尼泊尔地震震区滑坡的继发性和震后演化研究[D].中国地震局地质研究所博士学位论文.
[9] 王军伟.2018.山区公路复杂地质条件地质勘察方法[J].公路交通科技(应用技术版), 14(1):177-178.
[10] 熊思婷, 曾琪明, 焦健, 章晓洁.2014.邻轨PS-InSAR 地面沉降结果拼接处理方法与实验[J].地球信息科学学报, 16(5):797-805.
[11] 许强, 董秀军, 李为乐.2019.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报(信息科学版), 44(7):957-966.
[12] 闫怡秋, 郭长宝, 钟宁, 李雪, 李彩虹.2022.基于InSAR形变监测的四川甲居古滑坡变形特征[J].地球科学, 47(12):4681-4697.
[13] 姚琪, 徐锡伟, 邢会林, 程佳, 江国焰, 马未宇, 刘杰, 杨文.2018. 2015 年尼泊尔地震三维发震构造及地震危险性研究[J].地球物理学报, 61(6):2332-2343.
[14] 殷宗敏, 赵宝强, 叶润青.2022.时序InSAR 技术在三峡库首区潜在滑坡识别中的应用研究[J].华南地质, 38(2):273-280.
[15] 尹玉玲, 徐素宁, 王军, 胡克.2023.典型黄土丘陵区地质灾害隐患识别与时序监测[J].水文地质工程地质, 50(2):141-149.
[16] 云烨, 吕孝雷, 付希凯, 薛飞扬.2020.星载InSAR 技术在地质灾害监测领域的应用[J].雷达学报, 9(1):73-85.
[17] 张路, 廖明生, 董杰, 许强, 龚健雅.2018.基于时间序列In-SAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报(信息科学版), 43(12):2039-2049.
[18] 张双成, 余静, 宋明鑫, 张彬玲, 樊茜佑, 司锦钊, 张雅斐.2022.南水北调中线区域地面沉降SBAS-InSAR 监测研究[J].大地测量与地球动力学, 42(12):1300-1306.
[19] 张志华, 胡长涛, 张镇, 杨树文.2022.基于PS-InSAR 上海地区地表沉降监测与分析[J].自然资源遥感, 34(3):106-111.
[20] 赵富萌, 张毅, 孟兴民, 苏晓军, 石伟.2020.基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J].水文地质工程地质, 47(1):142-152.
[21] 朱武, 张勤, 丁晓利.2012.多参考点的PS-InSAR 变形监测数据处理[J].测绘学报, 41(6):886-890+903.
[22] 朱建军, 李志伟, 胡俊.2017. InSAR 变形监测方法与研究进展[J].测绘学报, 46(10):1717-1733.
[23] Dahal R K. 2012. Rainfall-induced Landslides in Nepal[J]. International Journal of Erosion Control Engineering, 5(1): 1-8.
[24] Gabriel A K, Goldstein R M, Zebker H A. 1989. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 94(B7):9183-9191.
[25] Lombardi L, Nocentini M, Frodella W, Nolesini T, Bardi F, Intrieri E, Carlà T, Solari L, Dotta G, Ferrigno F, Casagli N. 2016. The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping[J]. Landslides, 14(2): 685-696.
[26] Mencin D, Bendick R, Upreti B N, Adhikari D P, Gajurel A P, Bhattarai R R, Shrestha H R, Bhattarai T N, Manandhar N, Galetzka J, Knappe E, Pratt-Sitaula B, Aoudia A, Bilham R. 2016. Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake[J]. Nature Geoscience, 9(7):533-537.
[27] Nirdesh N, Chen J G, Chen H Y, Wang X A, Sharma T P P. 2019. Assessment of landslide susceptibility along the Araniko Highway in Poiqu/Bhote Koshi/Sun Koshi Watershed, Nepal Himalaya[J]. Progress in Disaster Science, 3(C):100037
[28] Pandey V P, Shrestha S, Kazama F. 2012. Groundwater in the Kathmandu Valley: development dynamics, consequences and prospects for sustainable management[J]. EuropeanWater, 37: 3-14.
[29] Shrestha S. 2017. The contested common pool resource: Ground water use in urban Kathmandu, Nepal[J]. Geographical Journal of Nepal, 10: 153-166.
[30] Tian Y Y, Owen L A, Xu C, Ma S Y, Li K, Xu X W, Figueiredo P M, Kang W J, Guo P, Wang S Y, Liang X H, Maharjan S B. 2020. Landslide development within 3 years after the 2015 Mw 7.8 Gorkha earthquake, Nepal[J]. Landslides, 17: 1251-1267.
[31] Virk A S, Singh A, Mittal S K. 2018. Advanced MT-InSAR Landslide Monitoring: Methods and Trends[J]. Journal of Remote Sensing & GIS, 7(1): 1000225.
[32] Whipple K X, Shirzaei M, Hodges K V, Arrowsmith J R. 2016. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake[J]. Nature Geoscience, 9(9): 711-716.
-
计量
- 文章访问数: 579
- PDF下载数: 45
- 施引文献: 0