Preliminary Evaluation of Rare Metal, Rare Earth and Rare Dispersed Mineral Resources in Red Mud Reservoir of Pingguo Bauxite in Guangxi
-
摘要: 赤泥是铝土矿生产过程中产生的固体废弃物,富含战略性关键金属Zr、Nb、Sc、Ga、REE等,对其进行评价,可以为资源综合利用提供科学依据。本文对广西平果铝土矿赤泥库的赤泥进行分析研究,结果表明赤泥的主要化学成分为Fe2O3、Al2O3、CaO、SiO2、TiO2、Na2O,相比于原生矿石,赤泥中Li 元素含量相对贫乏,Be、Zr、Hf、Nb、Ta、Sc、Ga、LREE、HREE元素含量相对富集,赤泥中Fe、Ti、Zr、Nb、Sc、Ga、REE 元素含量达到了综合回收利用的要求。估算平果铝土矿赤泥库含铁(TFe)928.2 万吨、钛(TiO2)174.3 万吨、锆(ZrO2)11.81 万吨、铌(Nb2O5)1.71 万吨、钪3954 吨、镓1452 吨、轻稀土氧化物3.62 万吨、重稀土氧化物1.67 万吨。平果铝土矿赤泥库铌资源量达到了大型矿床规模,钪资源量远超过大型矿床规模。Abstract: Red mud is a solid waste produced in the process of bauxite production, which is rich in in strategic key metals as Zr, Nb, Sc, Ga, REE, etc, a preliminary evaluation of which can provide scientific basis for the comprehensive utilization of resources. The analysis of red mud in red mud dumps of Pingguo bauxite in Guangxi shows that the main chemical components of red mud are Fe2O3, Al2O3, CaO, SiO2, TiO2 and Na2O. Compared with primary bauxite, the content of Li elements is relatively poor, while Be, Zr, Hf, Nb, Ta, Sc, Ga and REE elements are enriched. Fe, Ti, Zr, Nb, Sc, Ga LREE and HREE content in red mud meet the requirements of resource recovery and utilization. It is estimated that red mud dumps of Pingguo bauxite contains 928.2 ten thousand tons of iron (TFe), 174.3 ten thousand tons of titanium (TiO2), 11.81 ten thousand tons of zirconium (ZrO2), 1.71 ten thousand tons of niobium (Nb2O5), 3954 tons of Sc, 1452 tons of Ga, 3.62 ten thousand tons of light rare earth oxides, and 1.67 ten thousand tons of heavy rare earth oxides. The niobium resources of Pingguo bauxite red mud dumps have reached the scale of large deposits, and the scandium resources have far exceeded the scale of large deposits.
-
Key words:
- bauxite /
- red mud /
- rare, dispersed, and rare earth element minerals /
- Pingguo /
- Guangxi
-
-
[1] 蔡书慧,刘学飞,孟健寅,孙思磊.2012.桂西田阳堆积型铝土矿矿物学及地球化学[J].地质与勘探,48(3):460-470.
[2] 程顺波,刘阿睢,崔森,李荣志.2021.桂西二叠纪喀斯特型铝土矿地质成矿过程[J].地球科学,46(8):2697-2710.
[3] 程顺波,刘阿睢,李荣志,韦义师,李堃,刘飞,丁丽雪,汤朝阳,张会军,陈绿森,杜国建.2019.广西1∶5 万果化镇幅、龙马镇幅、进结幅、平果县幅区域地质调查报告[R].中国地质调查局武汉地质调查中心.
[4] 程顺波,刘阿睢,李荣志,韦义师,刘君豪,胥明.2020.桂西二叠纪喀斯特型铝土矿豆鲕特征及成因[J].华南地质,36(3):232-239.
[5] 杜善国,高建阳.2017.高铁赤泥提取TiO2试验研究[J].轻金属,10:13-16.
[6] 高攀,张佳莉,张青伟,阳纯龙,黎修旦,嫪秉魁,皮桥辉,李社宏.2016.赤泥中的三稀矿产资源综合评价—以桂西地区为例[J].桂林理工大学学报,36(1):144-152.
[7] 何海洲,杨志强,郑力.2014.广西铝土矿资源特征及利用现状[J].中国矿业,23(5):14-22.
[8] 矿产资源工业要求手册编委会.2020.矿产资源工业要求手册[M].北京:地质出版社.
[9] 李海兰,张杰,吴林,张玉松,黄智龙.2021.赤泥中的稀土资源:分布、赋存和提取[J].矿物学报,41(4):578-592.
[10] 李启津,侯正洪,吴成柳.1981.拜耳法溶出赤泥的矿物组成[J].轻金属,(11):8-11.
[11] 李义伟,付向辉,李立.2020.赤泥综合回收利用研究进展及展望[J].稀土,41(6):97-107.
[12] 刘述仁,于站良,谢刚,李荣兴.2014.从拜耳法赤泥中回收铁的试验研究[J].轻金属,2:14-17.
[13] 龙克树,付勇,龙珍,田精林,郑军.2019.全球铝土矿中稀土和钪的资源潜力分析[J].地质学报,93(6): 1279-1295.
[14] 龙永珍.2003.桂西铝多金属矿矿床地质地球化学特征及综合利用研究[D].中南大学博士学位论文.
[15] 鲁方康,黄智龙,金中国,周家喜,丁伟,谷静.2009.黔北务-正-道地区铝土矿镓含量特征与赋存状态初探[J].矿物学报,29(3):373-379.
[16] 吕良,王守敬,岳铁兵,李文军,曹飞.2012.国外某铁砂矿综合回收技术研究[J].金属矿山,(1):73-76.
[17] 苏候香,王中慧.2016.赤泥中浸出铌工艺条件的研究[J].有色金属(冶炼部分),(7):51-53.
[18] 王登红,王瑞江,李建康,赵芝,于扬,代晶晶,陈郑辉,李德先,屈文俊,邓茂春,付小方,孙艳,郑国栋.2013.中国三稀矿产资源战略调查研究进展综述[J]. 中国地质,40(2):361-370.
[19] 王瑞江,王登红,李建康,孙艳,李德先.2015.稀有稀土稀散矿产资源及其开发利用[M].北京:地质出版社.
[20] 吴缨. 2002.平果铝土矿二期配矿方法的探讨[J].湖南有色金属,18(5):1-3.
[21] 肖军辉,梁冠杰,黄雯孝,丁威,彭杨.2019.含钪赤泥氯化钠离析焙烧-弱磁选-盐酸浸出分离铁、钪试验研究[J].工程科学与技术,51(4): 199-209.
[22] 叶霖,程曾涛,潘自平.2007.贵州修文小山坝铝土矿中稀土元素地球化学特征[J].矿物岩石地球化学通报,26(3):228-233.
[23] 叶彤,谷静,王甘露,黄智龙.2021.铝土矿中伴生三稀元素研究进展[J].矿物学报,41(4):391-399.
[24] 张启连,赵辛金,李玉坤,李昌明,韦访.2020.桂西二叠系铝土矿地球化学特征与沉积模[J]. 地质论评,66(4):1043-1059.
[25] 赵汀,秦鹏珍,王安建,王高尚,李建武.2017.镓矿资源需求趋势分析与中国镓产业发展思考[J].地球学报,38(1):77-84.
[26] 赵小明,张开明,毛新武,马铁球,黄友义,莫拉任,吴年文,王汉荣.2013.中南地区矿产资源潜力评价成矿地质背景研究报告[R].中国地质调查局武汉地质调查中心.
[27] Agatzini-Leonardou S, Oustadakis P, Tsakiridis P E, Markopoulos C. 2008. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure[J]. Journal of Hazardous Materials, (2): 579-586.
[28] Deng B, Li G, Luo J, Ye Q. 2019. Selectively leaching the iron-removed bauxite residues with phosphoric acid for enrichment of rare earth elements[J]. Separation and Purification Technology, 227: 115714-115720.
[29] Li Z H, Din J, Xu J S, Liao C G, Yin F G, Lu T, Li C, Li J M. 2013. Discovery of the REE minerals in the Wulong-Nanchuan bauxite deposits, Chongqing, China: insights on conditions of formation and processes[J]. Journal of Geochemical Exploration, 133: 88-102.
[30] Lu F H, Xiao T F, Lin J, Li A J, Long Q, Huang F, Xiao L H, Li X, Wang J W, Xiao Q X, Chen H Y. 2018. Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure[J]. Hydrometallurgy, 175:124-132.
[31] Qu Y, Li H, Wang X Q, Tian W, Zhang Y. 2019. Bioleaching of major, rare earth, and radioactive elements from red mud by using indigenous chemoheterotrophic bacterium Acetobacter sp[J]. Minerals, 9(2): 67-79.
[32] Reid S, Tam J, Yang M F, Azimi G. 2017. Technospheric mining of rare earth elements from bauxite residue (red mud): process optimization, kinetic investigation, and microwave pretreatment[J]. Scientific Reports, 7(1): 15457-15464.
[33] Rudnick R L, Gao S. 2014. Composition of the Continental Crust[J]. Treatise on Geochemistry (Second Edition),4: 1-51.
[34] Zhang N, Li H X, Cheng H J, Liu X M. 2017. Electron probe microanalysis for revealing occurrence mode of scandium in Bayer red mud[J]. Rare Metals, 36(4): 295-303.
-
计量
- 文章访问数: 730
- PDF下载数: 59
- 施引文献: 0