黝铜矿热力学计算热液矿床成矿温度——以山西义兴寨脉状金矿为例

孙荣良. 2023. 黝铜矿热力学计算热液矿床成矿温度——以山西义兴寨脉状金矿为例. 华南地质, 39(3): 581-587. doi: 10.3969/j.issn.2097-0013.2023.03.016
引用本文: 孙荣良. 2023. 黝铜矿热力学计算热液矿床成矿温度——以山西义兴寨脉状金矿为例. 华南地质, 39(3): 581-587. doi: 10.3969/j.issn.2097-0013.2023.03.016
SUN Rong-Liang. 2023. Mineralization Temperature Calculated from Tetrahedrite Thermodynamic: Implication for Vein-type gold Mineralization in the Yixingzhai Gold Deposit, Shanxi. South China Geology, 39(3): 581-587. doi: 10.3969/j.issn.2097-0013.2023.03.016
Citation: SUN Rong-Liang. 2023. Mineralization Temperature Calculated from Tetrahedrite Thermodynamic: Implication for Vein-type gold Mineralization in the Yixingzhai Gold Deposit, Shanxi. South China Geology, 39(3): 581-587. doi: 10.3969/j.issn.2097-0013.2023.03.016

黝铜矿热力学计算热液矿床成矿温度——以山西义兴寨脉状金矿为例

  • 基金项目:

    紫金矿业集团股份有限公司科技项目“山西义兴寨金矿矿床成因和成矿模式”

详细信息
    作者简介: 孙荣良(1986—),男,工程师,从事矿床学研究和矿山开采工作,E-mail: 412312094@qq.com
  • 中图分类号: P618.51;P611

Mineralization Temperature Calculated from Tetrahedrite Thermodynamic: Implication for Vein-type gold Mineralization in the Yixingzhai Gold Deposit, Shanxi

  • 热液矿床成矿温度的准确限定是正确理解成矿作用过程和矿床成因的重要前提。为查明山西义兴寨金矿床的成矿温度,本文对不同期次脉状金矿中的黝铜矿和银金矿开展了电子探针元素分析和热力学计算。研究结果表明义兴寨矿床脉状金矿黄铁矿−石英阶段、黄铁矿−黄铜矿−石英阶段和石英−多金属硫化物阶段的成矿温度分别为290~300℃、(330±10)℃、(250±10)℃。该结果与此矿床不同阶段流体包裹体均一温度一致,且更为精确,表明黝铜矿热力学温度计能准确地限定热液矿床的成矿温度。
  • 加载中
  • [1]

    葛良胜,王治华,杨贵才,路英川.2012.晋东北燕山期岩浆活动与金多金属成矿作用动力学[J]. 岩石学报,28(2):619-636.

    [2]

    景淑慧.1985.山西省繁峙县义兴寨金矿床成矿地质条件及成矿规律的研究[R]. 山西省地质矿产局211 地质,1-109.

    [3]

    李玉祥.2022.山西省义兴寨脉状金矿床地质特征及成作用过程[D].中国地质大学(武汉)硕士学位论文.

    [4]

    杨红英,王建国,周军.1995.山西义兴寨金矿流体包裹体的特征及意义[J].贵金属地质,4(3):177-183.

    [5]

    叶荣,赵伦山,沈镛立.1999.山西义兴寨金矿床地球化学研究[J].现代地质,13(4):415-418.

    [6]

    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社.

    [7]

    张立中.2018.山西省繁峙义兴寨金矿新发现蚀变斑岩型金矿体的地质地球化学特征与成矿时代[J].华南地质与矿产,34(2):134-141.

    [8]

    Bindi L, Evain M, Menchetti S. 2006. Temperature dependence of the silver distribution in the crystal structure[J]. Acta Crystallographica Section B, 62: 212-219.

    [9]

    Bodnar R J, Lecumberri-Sanchez P, Moncada D, Steele-MacInnis M. 2014. Fluid inclusions in hydrothermal ore deposits [M]. Treatise on geochemistry, 119-142.

    [10]

    Chinchilla D, Ortega L, Piña R, Merinero R, Moncada D, Bodnar R J, Quesada C, Valverde A, Lunar R. 2016. The Patricia Zn-Pb-Ag epithermal ore deposit: An uncommon type of mineralization in northeastern Chile[J]. Ore Geology Reviews, 73: 104-126.

    [11]

    Ebel D S, Sack R O. 1989. Ag-Cu and As-Sb exchange energies in tetrahedrite-tennantite fahlores[J]. Geochimica et Cosmochimica Acta, 53: 2301-2309.

    [12]

    Ebel D S, Sack R O. 1991. Arsenic-silverincompatibility in fahlore[J]. Mineralogical Magazine, 55: 521-528.

    [13]

    George L L, Cook N J, Ciobanu C L. 2017. Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides[J]. Minerals, 7(2): 17.

    [14]

    Sack R O. 1992. Thermochemistry of tetrahedrite-tennantite fahlores. The Stability of Minerals [M], Ross N L and Price GD, Eds, London: Chapman and Hall, pp. 243-266.

    [15]

    Sack R O. 2005. Internally consistent database for sulfides and sulfosalts in the system Ag2S-Cu2S-ZnS-FeSSb2S3-As2S3 [J]. Geochimica et Cosmochimica Acta, 69: 1157-1164.

    [16]

    Sack R O. 2017. Fahlore thermochemistry: gaps inside the (Cu,Ag)10 (Fe,Zn) 2 (Sb,As)4S13 cube[J]. Petrology, 25: 498-515.

    [17]

    Sack R O, Brackebusch F. 2004. Fahlore as an indicator of mineralization temperature and gold fineness[J]. CIM Bulletin, 97: 78-83.

    [18]

    Sack R O, Lichtner P C. 2010. Constraining compositions of hydrothermal fluids in equilibrium with polymetallic ore-forming sulfide assemblages[J]. Economic Geology, 105(1): 249-249.

    [19]

    Sack R O, Lynch J G V, Foit F J. 2003. Fahlore as a petrogenetic indicator: Keno Hill Ag-Pb-Zn district, Yukon, Canada[J]. Mineralogical Magazine, 67: 1023-1038.

    [20]

    Vapnik Y, Moroz I. 2002. Compositions and formation conditions of fluid inclusions in emerald from the Maria deposit (Mozambique) [J]. Mineralogical Magazine, 66(1): 201-213.

    [21]

    White J L, Orr R L, Hultgreen R. 1957. The thermodynamic properties of gold-silver alloys[J]. Acta Metallurgica, 5: 747-760.

    [22]

    Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 55(1-4): 229-272.

  • 加载中
计量
  • 文章访问数:  691
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2023-08-02
修回日期:  2023-08-25

目录