中国自然资源航空物探遥感中心主办
地质出版社出版

渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析

刘志中, 宋英旭, 叶润青. 2021. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析. 自然资源遥感, 33(4): 192-199. doi: 10.6046/zrzyyg.2020348
引用本文: 刘志中, 宋英旭, 叶润青. 2021. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析. 自然资源遥感, 33(4): 192-199. doi: 10.6046/zrzyyg.2020348
LIU Zhizhong, SONG Yingxu, YE Runqing. 2021. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images. Remote Sensing for Natural Resources, 33(4): 192-199. doi: 10.6046/zrzyyg.2020348
Citation: LIU Zhizhong, SONG Yingxu, YE Runqing. 2021. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images. Remote Sensing for Natural Resources, 33(4): 192-199. doi: 10.6046/zrzyyg.2020348

渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析

  • 基金项目:

    东华理工大学江西省放射性地学大数据技术工程实验室开放基金项目“基于地学大数据的滑坡危险性动态评价研究”(JELRGBDT202004)

    “基于大数据分析与机器学习的相山铀矿田大地电磁数据特征提取与噪声抑制”(JELRGBDT202003)

    江西省核地学数据科学与系统工程技术研究中心基金项目“柴达木盆地油砂有机地球化学特征研究-应用可视化建模技术”(JETRCNGDSS202002)

    东华理工大学博士科研启动基金项目“基于多源数据的滑坡灾害风险动态评价研究”(DHBK2019218)

    宜昌市资源环境承载能力调查评价项目(DD20190315)

详细信息
    作者简介: 刘志中(1982-),男,高级工程师,主要从事地质工程、隧道工程、安全工程等方向的研究。Email:798636717@qq.com。
  • 中图分类号: TP79

An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images

  • 2014年8月31日—9月2日重庆市渝东北地区出现一次强降雨过程,引发了大量滑坡,造成了人员伤亡和重大经济损失。为掌握此次降雨诱发滑坡情况,分析滑坡与降雨关系,结合遥感和地理信息系统技术,通过该地区“8·31”暴雨前后的高空间分辨率卫星遥感影像解译,获得了暴雨诱发滑坡分布情况,分析了滑坡发生与降雨、地形之间的关系,研究发现: 渝东北地区复杂的地质构造条件以及由其产生的特有的构造侵蚀地貌格局,不仅使得该区域成为暴雨中心,也导致了该地区降雨型滑坡多发、频发。当日降雨量和累积降雨量分别超过80 mm和160 mm时滑坡开始持续发生; 当日降雨量超过100 mm或累积降雨量超过210 mm时滑坡大量发生。迎风坡且坡度在25°左右斜坡最易发生滑坡。研究认为,在降雨诱发地质灾害易发性分析及预测预报中,应考虑山区地形对局地降雨强度和分布的影响,以提高地质灾害时间和空间分析预测精准度。
  • 加载中
  • [1]

    杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2008,13(1):75-83.

    [2]

    Yang J H, Jiang Z H, Wang P X, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2008,13(1):75-83.

    [3]

    顾西辉, 张强, 孔冬冬, 等. 中国年和季节极端降水时空特征及极值分布函数上尾部性质[J]. 地理科学, 2017,37(6):929-937.

    [4]

    Gu X H, Zhang Q, Kong D D, et al. Spatiotemporal patterns of extreme precipitation distributions with annual and seasonal scales and potential impact of tropical cyclones in China[J]. Scientia Geographica Sinica, 2017,37(6):929-937.

    [5]

    张俊, 高雅琦, 徐卫立, 等. 长江流域极端降雨事件时空分布特征[J]. 人民长江, 2019,50(8):81-86.

    [6]

    Zhang J, Gao Y Q, Xu W L, et al. Spatial and temporal analysis of extreme precipitation events in Yangtze River Basin[J]. Yangtze River, 2019,50(8):81-86.

    [7]

    王兰生, 李曰国, 詹铮. 1981年暴雨期四川盆地区岩质滑坡的发育特征[J]. 大自然探索, 1982(1):44-51.

    [8]

    Wang L S, Li Y G, Zhan Z. Distribution of rock landslide failed in 1981 triggered by torrential rain in Sichuan Basin[J]. Discovery of Nature, 1982(1):44-51.

    [9]

    柳源. 滑坡临界暴雨强度[J]. 水文地质工程地质, 1998(3):43-45.

    [10]

    Liu Y. Critical rainstorm intensity of landslide[J]. Hydrogeology and Engineering Geology, 1998(3):43-45.

    [11]

    黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004,19(3):444-450.

    [12]

    Huang R Q. Mechanism of large scale landslides in Western China[J]. Advance in Earth Sciences, 2004,19(3):444-450.

    [13]

    赵鹏, 杨沛霖, 蒋莉, 等. 渝东北地区强降雨诱发地质灾害险情分析[J]. 长江科学院院报, 2017,34(10):50-56.

    [14]

    Zhao P, Yang P L, Jiang L, et al. Situation of geologic hazards induced by heavy rainfall in northeast Chongqing[J]. Journal of Yangtze River Scientific Research Institute, 2017,34(10):50-56.

    [15]

    陈洁, 高子弘, 王珊珊, 等. 三峡库区航空遥感地质调查技术发展综述[J]. 国土资源遥感, 2020,32(2):1-10.doi: 10.6046/gtzyyg.2020.02.01.

    [16]

    Chen J, Gao Z H, Wang S S, et al. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land and Resources, 2020,32(2):1-10.doi: 10.6046/gtzyyg.2020.02.01.

    [17]

    Mantovani F, Soeters R, Westen C V. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology, 1996,15:213-225.

    [18]

    宋英旭. 基于空天地一体化监测的滑坡风险动态评价研究[D]. 武汉:中国地质大学(武汉), 2019.

    [19]

    Song Y X. Research on dynamic evaluation of landslide risk based on integrated air-space-ground monitoring[D]. Wuhan:China University of Geosciences(Wuhan), 2019.

    [20]

    文广超, 张哲玮, 肖学军, 等. 基于遥感数据的灾后滑坡信息快速提取方法[J]. 中国地质灾害与防治学报, 2020,31(2):84-90.

    [21]

    Wen G C, Zhang Z W, Xiao X J, et al. Rapid extraction method of post-disaster landslide information based on remote sensing data[J]. The Chinese Journal of Geological Hazard and Control, 2020,31(2):84-90.

    [22]

    Colesanti C, Wasowski J. Investigating landslides with space-borne synthetic aperture Radar (SAR) interferometry[J]. Engineering Geology, 2006,88(3-4):173-199.

    [23]

    Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission(TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(2):809-817.

    [24]

    唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015,30(4):607-615.

    [25]

    Tang G Q, Wan W, Zeng Z Y, et al. An overview of the globe precipitation measurement(GPM) mission and it’s latest development[J]. Remote Sensing Technology and Application, 2015,30(4):607-615.

    [26]

    陈明, 傅抱璞, 于强. 山区地形对暴雨的影响[J]. 地理学报, 1995,50(3):256-263.

    [27]

    Chen M, Fu B P, Yu Q. Influence of topography on storm rainfall[J]. Acta Geographica Sinca, 1995,50(3):256-263.

    [28]

    王沛东, 李国平. 秦巴山区地形对一次西南涡大暴雨过程影响的数值试验[J]. 云南大学学报(自然科学版), 2016,38(3):418-429.

    [29]

    Wang P D, Li G P. Numerical experiments of the impact of Qin-Ba mountainous terrain on a rainstorm caused by southwest vortex[J]. Journal of Yunnan University, 2016,38(3):418-429.

  • 加载中
计量
  • 文章访问数:  545
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2020-11-06
刊出日期:  2021-12-15

目录