中国自然资源航空物探遥感中心主办
地质出版社出版

中外超大城市热岛效应变化对比研究

王美雅, 徐涵秋. 2021. 中外超大城市热岛效应变化对比研究. 自然资源遥感, 33(4): 200-208. doi: 10.6046/zrzyyg.2020393
引用本文: 王美雅, 徐涵秋. 2021. 中外超大城市热岛效应变化对比研究. 自然资源遥感, 33(4): 200-208. doi: 10.6046/zrzyyg.2020393
WANG Meiya, XU Hanqiu. 2021. A comparative study on the changes in heat island effect in Chinese and foreign megacities. Remote Sensing for Natural Resources, 33(4): 200-208. doi: 10.6046/zrzyyg.2020393
Citation: WANG Meiya, XU Hanqiu. 2021. A comparative study on the changes in heat island effect in Chinese and foreign megacities. Remote Sensing for Natural Resources, 33(4): 200-208. doi: 10.6046/zrzyyg.2020393

中外超大城市热岛效应变化对比研究

  • 基金项目:

    国家重点研发计划专项课题“大尺度全球变化数据产品快速生成方法”(2016YFA0600302)

    福建省创新战略研究项目“厦漳泉都市区生态质量遥感评价与地表空间格局优化研究”(2020R0155)

    闽南师范大学校长基金项目“全球气候变化视角下的城市热环境遥感动态监测”(KJ19013)

详细信息
    作者简介: 王美雅(1991-),女,博士,副教授,主要从事环境与资源遥感研究。Email:286097145@qq.com。
  • 中图分类号: TP79

A comparative study on the changes in heat island effect in Chinese and foreign megacities

  • 快速城市化形成超大城市导致地表覆盖快速变化,改变地表热平衡,使得城市热环境剧烈变化。以1990s,2000s和2015年这3个时期为研究时相,选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,多时相Landsat遥感影像为主要数据源,进行城市热环境变化对比及成因分析。利用普适性单通道算法反演各城市地表温度,计算城市热岛比例指数(urban heat island ratio index,URI)来定量对比研究期间各城市热岛效应时空变化。城市热岛效应对比研究结果表明,1990s—2015年间,北京、上海和东京的URI呈总体上升趋势,广州、伦敦和纽约的URI呈总体下降趋势。到2015年,东京城市热岛效应最严重(URI=0.630),其次是北京、上海、纽约和广州,分别为0.617,0.594,0.555和0.530,伦敦的URI指数最小为0.433。整个研究期间,北京、上海、广州和东京等超大城市均有较大幅度扩张,建成区面积均增加500 km2以上,不透水面面积增加370 km2以上,不断向外蔓延并占用生态用地,加上城市组团间无法形成良好的绿化分隔带,造成城市地表温度等级大幅上升,尤其是新城区热岛效应增强显著; 而在老城区通过旧城改造,热环境得到显著改善。伦敦和纽约城市无明显扩张,地表温度变化幅度较小。在今后城市建设中,需注重生态理念,优化城市地表空间格局,提高生态用地效益。
  • 加载中
  • [1]

    匡文慧, 杨天荣, 刘爱琳, 等. 城市地表覆盖结构组分与热环境调控模型(EcoCity)研究——以北京城市为例[J]. 中国科学(地球科学), 2017,47(7):847-859.

    [2]

    Kuang W H, Yang T R, Liu A L, et al. An EcoCity model for regulating urban land cover structure and thermal environment:Taking Beijing as an example[J]. Science China Earth Sciences, 2017,47(7):847-859.

    [3]

    Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index(RSEI)[J]. Ecological Indicators, 2018,93:730-740.

    [4]

    Croft-White M V, Cvetkovic M, Rokitnicki-Wojcik D, et al. A shoreline divided:Twelve-year water quality and land cover trends in Lake Ontario coastal wetlands[J]. Journal of Great Lakes Research, 2017,43(6):1005-1015.

    [5]

    United Nations. State of the world population 2014-the power of 1.8 billion:Adolescents,youth and the transformation of the future[EB/OL]. https://reliefweb.int/report/world/state-world-population-2014-power-18-billion-adolescents-youth-and-transformation.

    [6]

    Meng F, Shan B Y, Liu M. Remote-sensing evaluation of the relationship between urban heat islands and urban biophysical descriptors in Jinan,China[J]. Journal of Applied Remote Sensing, 2014,8(1):083693.

    [7]

    葛荣凤, 王京丽, 张力小, 等. 北京市城市化进程中热环境响应[J]. 生态学报, 2016,36(19):6040-6049.

    [8]

    Ge R F, Wang J L, Zhang L X, et al. Impacts of urbanization on the urban thermal environment in Beijing[J]. Acta Ecologica Sinica, 2016,36(19):6040-6049.

    [9]

    Feyisa G L, Meilby H, Jenerette G D, et al. Locally optimized separability enhancement indices for urban land cover mapping:Exploring thermal environmental consequences of rapid urbanization in Addis Ababa,Ethiopia[J]. Remote Sensing of Environment, 2016,175:14-31.

    [10]

    Weng Q H, Lu D S. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation and Geoinformation, 2008,10(1):68-83.

    [11]

    Zheng B J, Myint S W, Fan C. Spatial configuration of anthropogenic land cover impacts on urban warming[J]. Landscape and Urban Planning, 2014,130:104-111.

    [12]

    Chen Y J, Yu S X. Impacts of urban landscape patterns on urban thermal variations in Guangzhou,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,54:65-71.

    [13]

    Kotharkar R, Bagade A. Evaluating urban heat island in the critical local climate zones of an Indian city[J]. Landscape and Urban Planning, 2018,169:92-104.

    [14]

    中国国家统计局. 中国统计年鉴(2015年)[M]. 北京: 中国统计出版社, 2016.

    [15]

    National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2016.

    [16]

    United Nations. World population prospects:The 2018 revision[EB/OL]. https://population.un.org/wup/Publications/.

    [17]

    中国住房和城乡建设部. 中国城市建设统计年鉴2014[M]. 北京: 中国统计出版社, 2015.

    [18]

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. China urban construction statistical yearbook[M]. Beijing: China Statistics Press, 2015.

    [19]

    Van de Voorde T, Jacquet W, Canters F. Mapping form and function in urban areas:An approach based on urban metrics and continuous impervious surface data[J]. Landscape and Urban Planning, 2011,102(3):143-155.

    [20]

    Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009,113(5):893-903.

    [21]

    Charvz Jr P S. Image-based atmospheric corrections-revisited and revised[J]. Photogrammetric Engineering and Remote Sensing, 1996,62(9):1025-1036.

    [22]

    Jiménez-Muñoz J C, Cristobal J, Sobrino J A, et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(1):339-349.

    [23]

    Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research Atmospheres, 2003,108(D22):4688.

    [24]

    Jiménez-Muñoz J C, Sobrino J A, Skoković D, et al. Land surface temperature retrieval methods from Landsat8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(10):1840-1843.

    [25]

    徐涵秋, 陈本清. 不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J]. 遥感技术与应用, 2003,18(3):129-133.

    [26]

    Xu H Q, Chen B Q. An image processing technique for the study of urban heat island changes using different seasonal remote sensing data[J]. Remote Sensing Technology and Application, 2003,18(3):129-133.

    [27]

    国家环保部. 生态环境状况评价技术规范(发布稿)[S]. 北京: 中国标准出版社, 2015.

    [28]

    Ministry of Ecology and Environment the People's Republic of China. Technical criterion for ecosystem status evaluation[S]. Beijing: Standards Press of China, 2015.

    [29]

    住房城乡建设部. 城市生态建设环境绩效评估导则(试行)[M]. 北京: 中国建筑工业出版社, 2015.

    [30]

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Guidelines for performance assessment of urban ecological construction[M]. Beijing: China Architecture and Building Press, 2015.

    [31]

    樊智宇, 詹庆明, 刘慧民, 等. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019,21(2):226-235.

    [32]

    Fan Z Y, Zhan Q M, Liu H M, et al. Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan[J]. Journal of Geo-Information Science, 2019,21(2):226-235.

    [33]

    Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.

    [34]

    Du P J, Samat A, Waske B, et al. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:38-53.

    [35]

    Padmanaban R, Bhowmik A K, Cabral P. A remote sensing approach to environmental monitoring in a reclaimed mine area[J]. ISPRS International Journal of Geo-Information, 2017,6(12):401.

    [36]

    Schneider A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach[J]. Remote Sensing of Environment, 2012,124:689-704.

  • 加载中
计量
  • 文章访问数:  997
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2020-12-08
刊出日期:  2021-12-15

目录