中国自然资源航空物探遥感中心主办
地质出版社出版

一种超像素上Parzen窗密度估计的遥感图像分割方法

张大明, 张学勇, 李璐, 刘华勇. 2022. 一种超像素上Parzen窗密度估计的遥感图像分割方法. 自然资源遥感, 34(1): 53-60. doi: 10.6046/zrzyyg.2021089
引用本文: 张大明, 张学勇, 李璐, 刘华勇. 2022. 一种超像素上Parzen窗密度估计的遥感图像分割方法. 自然资源遥感, 34(1): 53-60. doi: 10.6046/zrzyyg.2021089
ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. 2022. Remote sensing image segmentation based on Parzen window density estimation of super-pixels. Remote Sensing for Natural Resources, 34(1): 53-60. doi: 10.6046/zrzyyg.2021089
Citation: ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. 2022. Remote sensing image segmentation based on Parzen window density estimation of super-pixels. Remote Sensing for Natural Resources, 34(1): 53-60. doi: 10.6046/zrzyyg.2021089

一种超像素上Parzen窗密度估计的遥感图像分割方法

  • 基金项目:

    国家自然科学基金项目“基于压平和3-DDIC的角膜生物力学性能活体检测方法及技术研究“(61471003)

    安徽省高校自然科学基金项目“几何造型理论及其方法研究“(KJ2018A0518)

    “城市建筑声环境设计及质量评价方法研究“(KJ2020A0484)

    “基于多粒度语义评价的群决策应用研究“(KJ2019JD17)

    安徽省重点实验室开放课题“建筑声环境设计、监测与评估有关理论及关键技术研究“(IBES2018KF04)

详细信息
    作者简介: 张大明(1976-)男,博士,副教授,主要研究方向为遥感信息处理和模式识别。Email: zhang_daming@aliyun.com
  • 中图分类号: TP391

Remote sensing image segmentation based on Parzen window density estimation of super-pixels

  • 图像分割是高分辨率遥感图像分析中的关键步骤,对信息提取精度起到重要作用。为提高传统基于像素的遥感图像分割算法性能,提出一种在超像素上进行Parzen窗密度估计的分割算法。包括超像素初始分割、特征测量、密度估计并重新聚类3个主要步骤。在超像素初始分割阶段,采用简单线性迭代聚类算法将图像进行超像素粗分割,并将每个超像素块标记为图结构中的一个顶点; 然后测量每个超像素块的Gabor纹理特征,构建高维特征向量并计算纹理间的相似度,作为图中连接2个顶点的边的权值,并在该图的最小生成树上计算2个顶点之间的距离; 接着将此距离用于Parzen窗,估计每个顶点的密度,并重新聚类得到最终结果。采用多幅多光谱高分辨遥感图像验证本文提出的算法,基于目视判别以及基于准确率和召回率的定量评价,将该方法与其他分割算法的结果进行比较,验证了提出算法的有效性。
  • 加载中
  • [1]

    Chehata N, Orny C, Boukir S, et al. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images[J]. International Journal of Remote Sensing, 2014, 35(13):4758-4777. [2] Gao L P, Shi W Z, Miao Z L, et al. Method based on edge constraint and fast marching for road centerline extraction from very high-resolution remote sensing images[J]. Remote Sensing, 2018, 10(6):900. [3] Porter S, Linderman M . Historic land cover change in the agricultural midwest using an object-based approach for classification of high-resolution imagery[J]. Journal of Applied Remote Sensing, 2013, 7(1):073506. [4] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020,(6):519-531.[4] Huang P, Zheng Q, Liang C. Overview of image segmentation metho-ds[J]. Journal of Wuhan University(Natural Science Edition), 2020, 66(6):519-531.[5] Peng B, Zhang L, Zhang D. A survey of graph theoretical approaches to image segmentation[J]. Pattern Recognition, 2013, 46(3):1020-1038. [6] Fan S, Sun Y, Shui P. Region-merging method with texture pattern attention for SAR image segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(1):112-116. [7] Zhou C, Wu D, Qin W, et al. An efficient two-stage region merging method for interactive image segmentation[J]. Computers and Electrical Engineering, 2016, 54:220-229. [8] Lassalle P, Inglada J, Michel J, et al. A scalable tile-based framework for region-merging segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5473-5485. [9] 黄亮, 姚丙秀, 陈朋弟, 等. 高分辨率遥感影像超像素的模糊聚类分割法[J]. 测绘学报, 2020, 49(5):589-597.[9] Huang L, Yao B X, Chen P D, et al. Superpixel segmentation method of high resolution remote sensing image based on fuzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):589-597.[10] An J, Shi Y, Han Y, et al. Extract and merge:Superpixel segmentation with regional attributes[C]// European Conference on Computer Vision.Springer, 2020:155-170.[11] Xu H, Zhang H, He W, et al. Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification[J]. Neurocomputing, 2019, 360:138-150. [12] Achanta R, Shaji A, Smith K, et al. SLIC Superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [13] Karydas C, Jiang B. Scale optimization in topographic and hydrographic feature mapping using fractal analysis[J]. International Journal of Geo-Information, 2020, 9(11):631.[14] Comaniciu D M P. A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):313-329. [15] Park J H, Lee G S, Park S Y. Color image segmentation using adaptive mean shift and statistical model-based methods[J]. Computers and Mathematics with Applications, 2009, 57(6):970-980. [16] Wang S, Chung F, Xiong F. A novel image thresholding method based on Parzen window estimate[J]. Pattern Recognition, 2008, 41(1):117-129. [17] 向日华, 王润生. 一种基于高斯混合模型的距离图像分割算法[J]. 软件学报, 2003, 14(7):1250-1257.[17] Xiang R H, Wang R S. A range image segmentation algorithm based on Gaussian mixture model[J]. Journal of Software, 2003, 14(7):1250-1257.[18] 赵泉华, 石雪, 王玉, 等. 可变类空间约束高斯混合模型遥感图像分割[J]. 通信学报, 2017, 38(2):34-43.[18] Zhang Q H, Shi X, Wang Y, et al. Remote sensing image segmentation based on spatially constrained Gaussian mixture model with unknown class number[J]. Journal on Communications, 2017, 38(2):34-43.[19] Li W, Mao K, Zhang H, et al. Selection of Gabor filters for improved texture feature extraction[C]// 2010 IEEE International Conference on Image Processing.IEEE, 2010:361-364.[20] Parzen E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33(3):1065-1076. [21] Scott D W. Multivariate density estimation:Theory,practice,and visualization[M]. John Wiley and Sons, 2015.[22] Jones M C, Marron J S, Sheather S J. A brief survey of bandwidth selection for density estimation[J]. Journal of the American Statistical Association, 1996, 91(433):401-407. [23] Raykar V C, Duraiswami R. Fast optimal bandwidth selection for kernel density estimation[C]// Proceedings of the 2006 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics, 2006:524-528.[24] Botev Z I, Kroese D P. Non-asymptotic bandwidth selection for density estimation of discrete data[J]. Methodology and Computing in Applied Probability, 2008, 10(3):435-451. [25] Trudeau R J. Introduction to graph theory[M]. Courier Corporation, 2013.[26] Foulds L R. Graph theory applications[M]. Springer Science and Business Media, 2012.[27] Unnikrishnan R, Pantofaru C, Hebert M. Toward objective evaluation of image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):929-944. [28] Gong C, Zhou P, Han J . Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415. [29] Fang Y, Wang J. Selection of the number of clusters via the bootstrap method[J]. Computational Statistics and Data Analysis, 2012, 56(3):468-477. [30] Haslbeck J M B, Wulff D U. Estimating the number of clusters via a corrected clustering instability[J]. Computational Statistics, 2020(35):1879-1894.[31] 青海玉树震后GeoEye-1卫星地图[EB/OL].(2010-04-20)[2021-02-15].http://www.godeyes.cn/html/2010/04/20/download_9519.html.

    [31] GeoEye-1 satellite map after Yushu earthquake in Qinghai Province[EB/OL].(2010-04-20)[2021-02-15].http://www.godeyes.cn/html/2010/04/20/download_9519.html.

  • 加载中
计量
  • 文章访问数:  597
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2021-03-26
刊出日期:  2022-03-14

目录