中国自然资源航空物探遥感中心主办
地质出版社出版

多感受野特征与空谱注意力结合的高光谱图像超分辨率算法

曲海成, 王雅萱, 申磊. 2022. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法. 自然资源遥感, 34(1): 43-52. doi: 10.6046/zrzyyg.2021115
引用本文: 曲海成, 王雅萱, 申磊. 2022. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法. 自然资源遥感, 34(1): 43-52. doi: 10.6046/zrzyyg.2021115
QU Haicheng, WAND Yaxuan, SHEN Lei. 2022. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention. Remote Sensing for Natural Resources, 34(1): 43-52. doi: 10.6046/zrzyyg.2021115
Citation: QU Haicheng, WAND Yaxuan, SHEN Lei. 2022. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention. Remote Sensing for Natural Resources, 34(1): 43-52. doi: 10.6046/zrzyyg.2021115

多感受野特征与空谱注意力结合的高光谱图像超分辨率算法

  • 基金项目:

    国家自然科学基金面上基金项目“改进BRDF先验知识耦合策略的Landsat30米地表反照率模型研究与验证“(42071351);辽宁省教育厅基础研究项目“可见光与红外图像跨域深度行人检测模型研究“(LJ2019JL010);辽宁工程技术大学学科创新团队资助项目“智慧农业遥感监测创新团队“(LNTU20TD-23)

详细信息
    作者简介: 曲海成(1981-),男,博士,副教授,主要研究方向为遥感影像高性能计算、目标检测识别。Email: quhaicheng@lntu.edu.cn
  • 中图分类号: TP751.1

Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention

  • 针对高光谱图像超分辨率过程中,图像细节信息容易丢失的问题,提出多感受野特征与空谱注意力结合的高光谱图像超分辨率算法,该算法充分利用高光谱图像中的高频信息与低频信息,减少图像细节信息丢失,提升了高光谱图像超分辨率效果。首先,在特征提取阶段采用不同大小卷积核的卷积,获取到多尺度感受野特征,更好地提取低分辨率图像中的高频信息与低频信息,有助于保留原始图像的特征信息; 然后,把获取到图像特征,经过“空间-光谱“结合的注意力机制增强,利用光谱维信息辅助空间维特征重建; 最后,把每组的特征融合,通过像素级反卷积层缓解棋盘格效应,输出清晰的高分辨率图像。实验结果表明: 提出的多感受野特征与空谱注意力结合的超分辨率算法在Chikusei和Pavia center scene这2个公开数据集上峰值信噪比分别达到了39.8697和31.9422,结构相似度分别达到了0.9376和0.8786,与最新超分辨率算法比较有明显的性能优势。该文提出的算法,结合了多感受野特征提取模块和空谱结合注意力模块的优势,超分辨率后的图像细节特征有了明显的改善。
  • 加载中
  • [1]

    Muhammad U, Arif M, Ajmal M. Hyperspectral face recognition using 3D-DCT and partial least squares[C]// Burghardt: BMVA Press.UK:University of Bristol,2013:57.1- 57.10.[2] Lowe A, Harrison N, French A P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[J]. Plant Methods, 2017, 13(1):80-92. [3] Lin J, Clancy N T, Qi J, et al. Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks[J]. Medical Image Analysis, 2018, 48:162-176. [4] Akhtar N, Shafait F, Mian A S. Sparse spatio-spectral representation for hyperspectral image super-resolution[C]// European Conference on Computer Vision, 2014:63-78.[5] Dian R, Li S, Guo A, et al. Deep hyperspectral image sharpening[J]. IEEE Transactions on Neural Network Learning Systems, 2018, 29(11):5345-5355. [6] Huang H, Yu J, Sun W. Super-resolution mapping via multi-dictionary based sparse representation[C]// IEEE International Conference on Acoustic,Speech and Signal Processing, 2014:3523-3527.[7] 练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法[J]. 自动化学报, 2013, 39(8):1310-1320.[7] Lian Q S, Zhang J Q, Chen S Z. Image superresolution algorithm based on two-level dictionary and subband dictionary[J]. Acta Automatica Sinica, 2013, 39(8):1310-1320. [8] Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [9] Li X, Wei H W, Zhang H Q. Super-resolution reconstruction of single remote sensing image combined with deep learning[J]. Journal of Image and Graphics, 2018, 23(2):209-218.[10] Qiao J, Song H, Zhang K, et al. Image super-resolution using conditional generative adversarial network[J]. IET Image Processing, 2019, 13(14):2673-2679. [11] Pan J T, Kevin M G, Elisa S, et al. Shallow and deep convolutional networks for saliency prediction[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2016:598-606.[12] Li K, Dai D X, Ender K, et al. Hyperspectral image super-resolution with spectral mixup and heterogeneous datasets[EB/OL].(2021-1-19)[2021-3-8].https://arxiv.org/pdf/2101.07589.htm. [13] Aggarwal H K, Majumdar A. Hyperspectral image denoising using spatio-spectral total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):442-446.[14] Loncan L, De Almeida L B, Briottet X, et al. Hyperspectral pansharpening[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):27-46. [15] Wald L. Data fusion:Definitions and architectures:Fusion of images of different spatial resolutions[M]. Presses des MINES,Computer Science, 2002.[16] Peng J Y, Shi C Y, Laugeman E, et al. Implementation of the structural SIMilarity (SSIM) index as a quantitative evaluation tool for dose distribution error detection[J]. Medical Physics, 2020, 47(4):1907-1919. [17] Mei S, Yuan X, Ji J, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing, 2017, 9(11):1139. [18] 李成轶, 田淑芳. 基于字典学习的遥感影像超分辨率融合方法[J]. 自然资源遥感, 2017, 29(1):50-56.doi: 10.6046/gtzyyg.2017.01.08. [18] Li C Y, Tian S F. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. Remote Sensing for Land and Resource, 2017, 29(1):50-56.doi: 10.6046/gtzyyg.2017.01.08. [19] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016:1646-1654.[20] Yuan Y, Zheng X, Lu X. Hyperspectral image superresolution by transfer learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5):1963-1974. [21] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017:136-144.[22] Zhang Y, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the European Conference on Computer Vision (ECCV), 2018:286-301.[23] Dai T, Cai J, Zhang Y, et al. Second-order attention network for single image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2019:11065-11074.[24] Mei S, Yuan X, Ji J, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing, 2017, 9(11):1139. [25] Li Y, Zhang L, Dingl C, et al. Single hyperspectral image super-resolution with grouped deep recursive residual network[C]// Proceedings of the IEEE International Conference on Multimedia Big Data, 2018:1-4.[26] Sidorov O, Hardeberg J Y. Deep hyperspectral prior:Single-image denoising,inpainting,super-resolution[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 2019:3844-3851.

  • 加载中
计量
  • 文章访问数:  973
  • PDF下载数:  49
  • 施引文献:  0
出版历程
收稿日期:  2021-04-20
刊出日期:  2022-03-14

目录