中国自然资源航空物探遥感中心主办
地质出版社出版

基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演

丁波, 李伟, 胡克. 2022. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演. 自然资源遥感, 34(1): 10-17. doi: 10.6046/zrzyyg.2021094
引用本文: 丁波, 李伟, 胡克. 2022. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演. 自然资源遥感, 34(1): 10-17. doi: 10.6046/zrzyyg.2021094
DING Bo, LI Wei, HU Ke. 2022. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data. Remote Sensing for Natural Resources, 34(1): 10-17. doi: 10.6046/zrzyyg.2021094
Citation: DING Bo, LI Wei, HU Ke. 2022. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data. Remote Sensing for Natural Resources, 34(1): 10-17. doi: 10.6046/zrzyyg.2021094

基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演

  • 基金项目:

    中国地质调查局地质调查项目"广西钦州湾海岸带综合地质调查"(DD20191024)

详细信息
    作者简介: 丁波(1978-),男,硕士,主要从事遥感地质及海岸带地质方面的研究。Email: ding_boo@126.com
  • 中图分类号: TP79

Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data

  • 悬浮物是近海海湾及潟湖水质的重要影响因素之一。遥感技术能够准确快速地反演水体的悬浮物浓度,但鲜有同时利用2种不同类型的数据源反演同一研究区的悬浮物浓度。该文基于同一时期(2019年9月)的GF-1C光学影像和GF-3微波数据,采用双波段比值算法和Cloude-Pottier分解算法分别对原始影像进行图像分割和目标提取,并在此基础上,结合同期野外采样数据,利用三次多项式回归算法,开展了茅尾海及其入海口水体悬浮物反演。精度分析显示,GF-1C反演模型相关系数(R2)、均方根误差和平均相对误差分别为0.88,130.25 mg/L和9.65%; 而GF-3反演模型对应结果分别为0.61,230.87 mg/L和15.13%,研究表明,GF-1C光学遥感反演精度(90.35%)要好于GF-3微波遥感反演结果(84.87%),但2种反演结果分布具有较高的相似性和一致性,进一步表明基于2种不同数据源建立的反演模型能够为茅尾海悬浮物反演和海岸带环境监测提供参考。
  • 加载中
  • [1]

    李京, 陈云浩, 刘志刚, 等. 海岛与海岸带环境遥感[M]. 北京: 科学出版社, 2010.[1] Li J, Chen Y H, Liu Z G, et al. Remote sensing of island and coast environment[M]. Beijing: Science Press, 2010.[2] Miller R L, McKee B A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J]. Remote Sensing of Environment, 2004, 93(1-2):259-266. [3] Astoreca R, Doxaran D, Ruddick K, et al. Influence of suspended particle concentration,composition and size on the variability of inherent optical properties of the Southern North Sea[J]. Continental Shelf Research, 2012, 35(2):117-128. [4] May C L, Koseff J R, Lucas L V, et al. Effects of spatial and temporal variability of turbidity on phytoplankton blooms[J]. Marine Ecology Progress Series, 2003, 254(6):111-128. [5] Ondrusek M, Stengel E, Kinkade C S, et al. The development of a new optical total suspended matter algorithm for the Chesapeake Bay[J]. Remote Sensing of Environment, 2012, 119:243-254. [6] Group S W. GEOTRACES:An international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Chemie der Erde, 2007, 67(2):85-131. [7] Ouillon S, Douillet P, Petrenko A, et al. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters[J]. Sensors, 2008, 8(7):4165-85. [8] Shi L L, Mao Z, Wang Z. Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery:A case study of inland rivers[C]// IOP Conference Series:Earth and Environmental Science, 2018, 121(3):1-12.[9] Larrarte F, Pons M N. Suspended solids concentration in wastewater:Influence of sampling conditions[J]. Urban Water Journal, 2011, 8(6):397-404. [10] Clark R N. The spectral reflectance of water-mineral mixtures at low temperatures[J]. Journal of Geophysical Research:Solid Earth, 1981, 86(b4):3074-3086.[11] Kokaly R F, Clark R N, Swayze G A, et al. USGS Spectral Library Version 7[Z].U.S. Geological Survey Data Series 1035, 2017:1-68.[12] Malinowski R, Groom G, Schwanghart W, et al. Detection and delineation of localized flooding from WorldView-2 multispectral data[J]. Remote Sensing, 2015, 7(11):14853-14875. [13] Knaeps E, Ruddick K G, Doxaran D, et al. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters[J]. Remote Sensing of Environment, 2015, 168:66-79. [14] Wang L, Zhao D Z, Yang J H, et al. Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China[J]. Journal of Oceanography, 2012, 68(5):719-725. [15] Giannini M F C, Harari J, Ciotti A M, et al. The use of CBERS(China-Brazil earth resources satellite) to trace the dynamics of total suspended matter at an urbanized coastal area[J]. Brazilian Journal of Oceanography, 2017, 65(2):309-323. [16] Dekker A G, Vos R J, Peters S W M. Comparison of remote sensing data,model results and in situ data for total suspended matter(TSM) in the southern Frisian lakes[J]. The Science of the Total Environment, 2001, 268:197-214. [17] 高晨, 徐健, 高丹, 等. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 自然资源遥感, 2019, 31(1):101-109.doi: 10.6046/gtzyyg.2019.01.14. [17] Gao C, Xu J, Gao D, et al. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land and Resources, 2019, 31(1):101-109.doi: 10.6046/gtzyyg.2019.01.14. [18] Ngoc D D, Loisel H, Vantrepotte V, et al. A simple empirical band-ratio algorithm to assess suspended particulate matter from remote sensing over coastal and inland waters of Vietnam:Application to the VNREDSat-1/NAOMI sensor[J]. Water(Switzerland), 2020, 12(9):1-16.[19] Kishino M, Tanaka A, Ishizaka J. Retrieval of Chlorophyll a,suspended solids,and colored dissolved organic matter in Tokyo Bay using ASTER data[J]. Remote Sensing of Environment, 2005, 99:66-74. [20] Ciancia E, Campanelli A, Lacava T, et al. Modeling and multi-temporal characterization of total suspended matter by the combined use of Sentinel 2-MSI and Landsat 8-OLI Data:The Pertusillo Lake case study(Italy)[J]. Remote Sensing, 2020, 12(13):1-24. [21] Moore G. Satellite remote sensing of water turbidity[J]. Hydrological Sciences Bulletin, 1980, 25(4):407-421. [22] Chen J F, Zagzebski J A, Madsen E L, et al. Tests of backscatter coefficient measurement using broadband pulses[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 1993, 40(5):603-607. [23] Lavarello R J, Ghoshal G, Oelze M L. On the estimation of backscatter coefficients using single-element focused transducers[J]. The Journal of the Acoustical Society of America, 2011, 129(5):2903-2911. [24] 刘国祥, 刘文熙, 黄丁发. InSAR技术及其应用中的若干问题[J]. 测绘通报, 2001, 1:21-24.[24] Liu G X, Liu W X, Huang D F. In SAR technology and its key problems in applications[J]. Bulletin of Surveying and Mapping, 2001, 1:21-24.[25] Kritikos H, Yorinks L, Smith H. Suspended solids analysis using ERTS-A data[J]. Remote Sensing of Environment, 1974, 3:69-78. [26] 王繁, 周斌, 徐建明, 等. 基于实测光谱的杭州湾悬浮物浓度杨反演模式[J]. 环境科学, 2008, 11:3022-3026.[26] Wang F, Zhou B, Xu J M, et al. Remote sensing inversion mode of suspended particles concentration in Hangzhou Bay based on in situ measurement spectrum[J]. Environmental Science, 2008, 11:3022-3026.[27] Shi W, Zhang Y L, Wang M H, et al. Deriving total suspended matter concentration from the near-infrared-based inherent optical properties over turbid waters:A case study in Lake Taihu[J]. Remote Sensing, 2018, 10(2):333-350. [28] 陈炯, 贾海峰, 杨健, 等. 基于极化SAR的河流有机物污染监测研究[J]. 环境科学, 2010, 31(9):2017-2022.[28] Chen J, Jia H F, Yang J, et al. Monitoring of organic pollutants in river based on polarimetric SAR[J]. Environmental Science, 2010, 31(9):2017-2022.[29] 中国地质调查局. DD2014-03海岸带地质环境调查评价规范[S]. 北京:中国地质调查局, 2014.[29] China Geological Survey. DD2014-03 Specification for survey and evaluation of coastal geological environment[S]. Beijing:China Geological Survey, 2014.[30] 高分系列卫星介绍[N].http://www.cheos.org.cn/n380375/n380413/index.html. [30] Introduction of GF series satellites[N]. http://www.cheos.org.cn/n380375/n380413/index.html. [31] Clark R N, Swayze G A, Wise R, et al. USGS digital spectral library splib06a[Z]. U.S.Geological Survey,Digital Data Series 231,2007.[32] Xu J, Gao C, Wang Y. Extraction of spatial and temporal patterns of concentrations of chlorophyll-a and total suspended matter in Poyang Lake using GF-1 satellite data[J]. Remote Sensing, 2020, 12(4):1-21. [33] 钟凯文, 刘旭拢, 解靓, 等. 基于遥感方法反演珠江三角洲西江干流悬浮泥沙分布研究[J]. 遥感应用, 2009, 12(3):49-52.[33] Zhong K W, Liu X L, Xie L, et al. Study on inversion model for the suspended sediment concentration in the Pear River delta using remote sensing technology[J]. Remote Sensing Information, 2009, 12(3):49-52.[34] Lee J S. A simple speckle smoothing algorithm for synthetic aperture Radar images[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC- 13(1):85-89.[35] Lee JS, Wen J H, Ainsworth T L, et al. Improved sigma filter for speckle filtering of SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):202-213. [36] Lee J S, Grunes M R, Mango S A. Speckle reduction in multipolarization,multifrequency SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(4):535-544. [37] Lee J S, Grunes M, Schuler D, et al. Scattering-model-based Speckle filtering of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44:176-187. [38] Tian S, Eltoft T. Gamma-WMAP:A wavelet based statistical speckle filter for SAR images[C]// 5th Nordic Signal Processing Symposium, 2002.[39] Lopez C, Fabregas X, Mallorqui J, et al. Noise filtering of SAR interferometric phase based on wavelet transform[C]// International Geoscience and Remote Sensing Symposium(IGARSS), 2001:2928-2930.[40] 卜方玲, 徐新. 一种基于小波分析的SAR图像斑点噪声滤波算法[J]. 武汉大学学报(信息科学版), 2001, 4:315-319.[40] Bu F L, Xu X. Speckle filtering method of SAR images based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 4:315-319.[41] Cloude S R, Pottier E. A review of target decomposition theorems in Radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518. [42] 曹芳, 洪文, 吴一戎. 基于Cloude-Pottier目标分解和聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究[J]. 电子学报, 2008, 3:543-546.[42] Cao F, Hong W, Wu Y R. An unsupervised classification for fully polarimetric SAR data using Cloude-Pottier decomposition and agglomerative hierarchical clustering algorithm[J]. Acta Electronica Sinica, 2008, 3:543-546.[43] 杨杰, 郎丰铠, 李德仁. 一种利用Cloude-Pottier分解和极化白化滤波的全极化SAR图像分类算法[J]. 武汉大学学报(信息科学版), 2011, 36(1):104-107.[43] Yang J, Lang F K, Li D R. An unsupervised Wishart classification for fully polarimetric SAR image based on Cloude-Pottier decomposition and polarimetric whitening filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):104-107.[44] 曹仕, 刘湘南, 刘美玲, 等. 基于Radarsat-2目标极化分解H-α;特征空间的海洋悬浮物浓度监测研究[J]. 热带海洋学报, 2013, 32(4):107-112.[44] Cao S, Liu X N, Liu M L, et al. Monitoring marine suspended particulate matter concentration using full polarimetric SAR data of Radarsat-2[J]. Journal of Tropical Oceanography, 2013, 32(4):107-112.[45] 黄洪辉, 廖秀丽, 戴明, 等. 茅尾海生态环境调查与现状评估报告[R]. 广州:中国水产科学研究院, 2013.[45] Huang H H, Liao X L, Dai M, et al. Report of ecological environment and status assessment in Maowei Sea[R]. Guangzhou:Chinese Academy of Fishery Sciences, 2013.

  • 加载中
计量
  • 文章访问数:  875
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2021-03-31
刊出日期:  2022-03-14

目录