中国自然资源航空物探遥感中心主办
地质出版社出版

基于GEE的杭州湾慈溪段潮滩提取及时空变化分析

郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 2022. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析. 自然资源遥感, 34(1): 18-26. doi: 10.6046/zrzyyg.2022021
引用本文: 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 2022. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析. 自然资源遥感, 34(1): 18-26. doi: 10.6046/zrzyyg.2022021
ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. 2022. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine. Remote Sensing for Natural Resources, 34(1): 18-26. doi: 10.6046/zrzyyg.2022021
Citation: ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. 2022. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine. Remote Sensing for Natural Resources, 34(1): 18-26. doi: 10.6046/zrzyyg.2022021

基于GEE的杭州湾慈溪段潮滩提取及时空变化分析

  • 基金项目:

    浙江省重点科技创新团队项目"城市湿地生态修复与资源利用科技创新团队"(2010R50039);攀登工程二期"湿地生态系统保护与治理"(PD2015306)

详细信息
    作者简介: 郑修诚(1999-),男,硕士研究生,主要研究方向为滨海湿地遥感监测。Email: 2017210214034@stu.hznu.edu.cn
  • 中图分类号: TP79

Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine

  • 当前常见的潮滩遥感提取方法往往通过估算来确定潮滩的边界,难以保证较高的提取精度。本研究结合GEE遥感云计算平台和GIS技术,选用1990—2021年间共77景Landsat卫星影像,通过目视解译人工海岸线作为平均高潮线,利用水边线拟合平均低潮线,实现了对杭州湾南岸慈溪段的潮滩提取和面积估算,分析了潮滩区域时空变化。研究表明,杭州湾南岸慈溪段潮滩面积基本维持在20 000~24 000 hm2区间; 空间变化趋势是由南向北迁移,迁移速度为286.9 m·a-1; 影响潮滩面积和空间变化的最主要驱动力是地方政策。
  • 加载中
  • [1]

    王颖, 朱大奎. 中国的潮滩[J]. 第四纪研究, 1990(4):291-300.[1] Wang Y, Zhu D K. Tidal flats of China[J]. Quaternary Sciences, 1990(4):291-300.[2] 时钟, 陈吉余, 虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展, 1996(6):37-44.[2] Shi Z, Chen J Y, Yu Z Y. Sedimentation on the intertidal mudflat in China:An overview[J]. Advances in Earth Science, 1996(6):37-44.[3] 张春桂. MODIS遥感数据在福建省海岸带滩涂资源监测中的应用研究[J]. 海洋学报, 2007(4):51-58.[3] Zhang C G. The application of MODIS data in tidal flat resource monitoring of coastal zone of Fujian Province in China[J]. Acta Oceonlolgica Sinica, 2007(4):51-58.[4] 王小龙, 张杰, 初佳兰. 基于光学遥感的海岛潮间带和湿地信息提取——以东沙岛(礁)为例[J]. 海洋科学进展, 2005(4):477-481.[4] Wang X L, Zhang J, Chu J L. Extraction of remotely sensed information of island intertidal zone and wetland:Taking the Dongsha Island as an example[J]. Advances in Marine Science, 2005(4)477-481.[5] 王小丹, 方成, 康慧, 等. 曹妃甸地区潮间带演变的遥感监测[J]. 海洋通报, 2014, 33(5):559-565.[5] Wang X D, Fang C, Kang H, et al. Remote sensing monitoring of the Caofeidian tidal zone evolution[J]. Marine Science Bulletin, 2014, 33(5):559-565.[6] 王靖雯, 牛振国. 基于潮位校正的盐城滨海潮间带遥感监测及变化分析[J]. 海洋学报, 2017, 39(5):149-160.[6] Wang J W, Niu Z G. Remote-sensing analysis of Yancheng intertidal zones based on tidal correction[J]. Haiyang Xuebao, 2017, 39(5):149-160.[7] 韩倩倩, 牛振国, 吴孟泉, 等. 基于潮位校正的中国潮间带遥感监测及变化[J]. 科学通报, 2019, 64(4):456-473.[7] Han Q Q, Niu Z G, Wu M Q, et al. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction[J]. Chinese Science Bulletin, 2019, 64(4):456-473.[8] 张媛媛, 高志强, 刘向阳, 等. 基于遥感水边线的潮滩面积提取方法研究[J]. 海洋开发与管理, 2018, 35(3):56-61.[8] Zhang Y Y, Gao Z Q, Liu X Y, et al. The extraction method of tidal flat area based on remote sensing waterlines[J]. Ocean Development and Management, 2018, 35(3):56-61.[9] 胡允和, 施德忠. 慈溪海涂促淤浅析[J]. 浙江水利科技, 1984(2):22-32.[9] Hu Y H, Shi D Z. Brief analysis of Cixi sea flat to promote sedimentation[J]. Zhejiang Hydrotechnics, 1984(2):22-32.[10] 王丽佳, 李加林, 田鹏, 等. 杭州湾南岸围垦土地人类活动强度及对滨海湿地覆被类型的影响[J]. 上海国土资源, 2020, 41(1):4-10.[10] Wang L J, Li J L, Tian P, et al. Impacts of human activity on coastal wetland land cover changes related to reclamation on the south coast of Hangzhou Bay[J]. Shanghai Land and Resources, 2020, 41(1):4-10.[11] 韩茜. 基于遥感技术的我国潮滩资源现状研究[D]. 南京: 南京师范大学, 2011.[11] Han Q. Research on the status of tidal resources in China using remote sensing technology[D]. Nanjing:Nanjing Normal University, 2011.[12] 张振德, 肖继春. 遥感在滩涂演变调查中的应用方法研究[J]. 自然资源遥感, 1995, 7(3):25-28.doi: 10.6046/gtzyyg.1995.03.05. [12] Zhang Z D, Xiao J C. The application of remote sensing to investigate tidal flat evolution[J]. Remote Sensing for Land and Resources, 1995, 7(3):25-28.doi: 10.6046/gtzyyg.1995.03.05. [13] 赵明才, 章大初. 海岸线定义问题的讨论[J]. 海岸工程, 1990(z1):91-99.[13] Zhao M C, Zhang D C. Discussions on the definition of shoreline[J]. Coastal Engineering, 1990(z1):91-99.[14] 盛静芬, 朱大奎. 海岸侵蚀和海岸线管理的初步研究[J]. 海洋通报, 2002(4):50-57.[14] Sheng J F, Zhu D K. Discussion about coastline erosion and management[J]. Marine Science Bulletin, 2002(4):50-57.[15] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.[15] Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.[16] 杨修国. 图像阈值分割方法研究与分析[D]. 上海: 华东师范大学, 2009.[16] Yang X G. Threshold image segmentation research and analysis[D]. Shanghai:East China Normal University, 2009.[17] Feyisa G L, Henrik M, Rasmus F, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35 [18] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033 [19] 饶萍, 王建力. 最优分区与最优指数联合的水体信息提取[J]. 地球信息科学学报, 2017, 19(5):702-712. [19] Rao P, Wang J L. Water extraction based on the optimal subregion and the optimal indexes combined[J]. Journal of Geo-Information Science, 2017, 19(5):702-712.[20] 陈星壮. 基于高分辨率遥感影像的城市水体提取算法研究[D]. 成都: 电子科技大学, 2021.[20] Chen X Z. Urban open water extraction from high resolution remote sensing images[D]. Chengdu:University of Electronic Science and Technology of China, 2021.[21] Otsu N. Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66. [22] Thieler E, Himmelstoss E, Zichichi J, et al. The Digital Shoreline Analysis System (DSAS) Version 4.0:An ArcGIS extension for calculating shoreline change[R]. Reston:U.S. Geological Survey, 2009.[23] 张华国, 郭艳霞, 黄韦艮, 等. 1986年以来杭州湾围垦淤涨状况卫星遥感调查[J]. 自然资源遥感, 2005, 17(2):50-54,81.doi: 10.6046/gtzyyg.2005.02.12. [23] Zhang H G, Guo Y X, Huang W G, et al. A remote sensing investigating of inning and silting in Hangzhou Bay since 1986[J]. Remote Sensing for Land and Resources, 2005, 17(2):50-54,81.doi: 10.6046/gtzyyg.2005.02.12. [24] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1):185-201. [25] Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1):35-46. [26] 朱世强. 高水平建设慈溪杭州湾新区[J]. 今日浙江, 2003(19):33-34.[26] Zhu S Q. High-level construction of Hangzhou Bay New District in Cixi[J]. Zhejiang Today, 2003(19):33-34.[27] 孙超, 刘永学, 李满春, 等. 近25 a来江苏中部沿海盐沼分布时空演变及围垦影响分析[J]. 自然资源学报, 2015, 30(9):1486-1498.[27] Sun C, Liu Y X, Li M C, et al. Spatiotemporal evolution of salt marsh and influential analysis of reclamation of Jiangsu middle coast in recent 25 years[J]. Journal of Natural Resources, 2015, 30(9):1486-1498.[28] 国务院. 国务院关于加强滨海湿地保护严格管控围填海的通知[EB/OL]. http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm. [28] The central people’s government of the PRC. Notice of the state council on strengthening the protection of coastal wetlands and strictly controlling reclamation[EB/OL].http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm. [29] 潘存鸿, 郑君, 曾剑, 等. 杭州湾年最大潮差分析[J]. 水动力学研究与进展(A辑), 2021, 36(2):201-209.[29] Pan C H, Zheng J, Zeng J, et al. Analysis of annual maximum tidal range in Hangzhou Bay[J]. Chinese Journal of Hydrodynamics, 2021, 36(2):201-209.[30] 潘存鸿, 郑君, 陈刚, 等. 杭州湾潮汐特征时空变化及原因分析[J]. 海洋工程, 2019, 37(3):1-11.

    [30] Pan C H, Zheng J, Chen G, et al. Spatial and temporal variations of tide characteristics in Hangzhou Bay and cause analysis[J]. The Ocean Engineering, 2019, 37(3):1-11.

  • 加载中
计量
  • 文章访问数:  1300
  • PDF下载数:  83
  • 施引文献:  0
出版历程
收稿日期:  2022-01-17
刊出日期:  2022-03-14

目录