联合空谱信息的高光谱影像深度Transformer网络分类

张鹏强, 高奎亮, 刘冰, 谭熊. 2022. 联合空谱信息的高光谱影像深度Transformer网络分类. 自然资源遥感, 34(3): 27-32. doi: 10.6046/zrzyyg.2021271
引用本文: 张鹏强, 高奎亮, 刘冰, 谭熊. 2022. 联合空谱信息的高光谱影像深度Transformer网络分类. 自然资源遥感, 34(3): 27-32. doi: 10.6046/zrzyyg.2021271
ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. 2022. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information. Remote Sensing for Natural Resources, 34(3): 27-32. doi: 10.6046/zrzyyg.2021271
Citation: ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. 2022. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information. Remote Sensing for Natural Resources, 34(3): 27-32. doi: 10.6046/zrzyyg.2021271

联合空谱信息的高光谱影像深度Transformer网络分类

  • 基金项目:

    国家自然科学基金项目“基于深度学习的航空序列遥感影像快速三维重建方法研究”(41801388)

详细信息
    作者简介: 张鹏强(1978-),男,博士,副教授,主要从事高光谱数据处理、机器学习研究。Email: zpq1978@163.com
  • 中图分类号: TP751

Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information

  • 卷积神经网络中的局部卷积运算无法对高光谱影像中的全局语义信息进行充分学习,因此,基于Transformer模型设计了一种新颖的深度网络模型,以进一步提高高光谱影像分类精度。首先,利用主成分分析方法对高光谱影像进行降维处理,并选取像素周围邻域数据作为输入样本,以充分利用影像中的空谱联合信息; 然后,利用卷积层将输入样本转换为序列特征向量; 最后,利用构建的深度Transformer网络进行分类。Transformer模型中的多头注意力机制能够充分利用丰富的判别性信息。试验表明,与现有卷积神经网络模型相比,文章方法能够获得更为优异的分类性能。
  • [1]

    He L, Li J, Liu C, et al. Recent advances on spectral-spatial hyperspectral image classification:An overview and new guidelines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3):1579-1597.

    [2]

    Ghamisi P, Plaza J, Chen Y, et al. Advanced spectral classifiers for hyperspectral images:A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32.

    [3]

    Tao C, Pan H, Li Y, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2438-2442.

    [4]

    Li T, Zhang J, Zhang Y. Classification of hyperspectral image based on deep belief networks[C]// Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), 2014.

    [5]

    Zhang X R, Sun Y J, Jiang K, et al. Spatial sequential recurrent neural network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4141-4155.

    [6]

    Xu Q, Xiao Y, Wang D, et al. CSA-MSO3DCNN:Multiscale octave 3D CNN with channel and spatial attention for hyperspectral image classification[J]. Remote Sensing, 2020, 12(1):188.

    [7]

    Gao K, Guo W, Yu X, et al. Deep induction network for small samples classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3462-3477.

    [8]

    高奎亮, 张鹏强, 余旭初, 等. 基于Network In Network网络结构的高光谱影像分类方法[J]. 测绘科学技术学报, 2019, 36(5):500-504,510.

    [9]

    Gao K L, Zhang P Q, Yu X C, et al. Classification method of hyperspectral image based on Network In Network structure[J]. Journal of Geomatics Science and Technology, 2019, 36(5):500-504,510.

    [10]

    Li Y, Zhang H, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.

    [11]

    Xu X, Li J, Li S. Multiview intensity-based active learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):669-680.

    [12]

    He X, Chen Y. Transferring CNN ensemble for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):876-880.

    [13]

    Mou L, Ghamisi P, Zhu X X. Unsupervised spectral-spatial feature learning via deep residual Conv-Deconv network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1):391-406.

    [14]

    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Thirty-first Conference on Neural Information Processing Systems, 2017.

    [15]

    Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16[Z]. Transformers for Image Recognition at Scale, 2020.

    [16]

    Yue J, Zhao W, Mao S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(4-6):468-477.

    [17]

    刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63.

    [18]

    Liu B, Yu X C, Zhang P Q, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63.

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、PDF下载量统计信息摘要浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.7 %DOWNLOAD: 6.7 %摘要: 93.3 %摘要: 93.3 %DOWNLOAD摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 9.9 %其他: 9.9 %其他: 6.7 %其他: 6.7 %[]: 0.3 %[]: 0.3 %三门峡: 0.5 %三门峡: 0.5 %东莞: 5.1 %东莞: 5.1 %北京: 3.5 %北京: 3.5 %十堰: 0.3 %十堰: 0.3 %南京: 1.9 %南京: 1.9 %南宁: 0.5 %南宁: 0.5 %南通: 0.3 %南通: 0.3 %台北: 0.8 %台北: 0.8 %台州: 0.3 %台州: 0.3 %合肥: 0.5 %合肥: 0.5 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 1.1 %嘉兴: 1.1 %大连: 0.5 %大连: 0.5 %天津: 1.1 %天津: 1.1 %孟买: 1.1 %孟买: 1.1 %安阳: 0.5 %安阳: 0.5 %宣城: 0.3 %宣城: 0.3 %常德: 0.5 %常德: 0.5 %广州: 0.5 %广州: 0.5 %慕尼黑: 1.1 %慕尼黑: 1.1 %扬州: 1.1 %扬州: 1.1 %新乡: 0.8 %新乡: 0.8 %新加坡: 0.8 %新加坡: 0.8 %昆明: 0.5 %昆明: 0.5 %杭州: 1.9 %杭州: 1.9 %汉中: 0.5 %汉中: 0.5 %江门: 0.3 %江门: 0.3 %洛阳: 1.3 %洛阳: 1.3 %济南: 1.3 %济南: 1.3 %温州: 0.8 %温州: 0.8 %湖州: 0.3 %湖州: 0.3 %漯河: 2.4 %漯河: 2.4 %烟台: 0.3 %烟台: 0.3 %芒廷维尤: 33.1 %芒廷维尤: 33.1 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %莫斯科: 1.3 %莫斯科: 1.3 %葫芦岛: 0.3 %葫芦岛: 0.3 %衢州: 0.8 %衢州: 0.8 %西宁: 1.6 %西宁: 1.6 %西安: 1.6 %西安: 1.6 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.3 %郑州: 0.3 %重庆: 0.8 %重庆: 0.8 %长春: 0.5 %长春: 0.5 %长沙: 3.8 %长沙: 3.8 %阿什本: 0.8 %阿什本: 0.8 %青岛: 2.7 %青岛: 2.7 %马湾: 0.5 %马湾: 0.5 %其他其他[]三门峡东莞北京十堰南京南宁南通台北台州合肥哈尔滨哥伦布嘉兴大连天津孟买安阳宣城常德广州慕尼黑扬州新乡新加坡昆明杭州汉中江门洛阳济南温州湖州漯河烟台芒廷维尤芝加哥苏州莫斯科葫芦岛衢州西宁西安邯郸郑州重庆长春长沙阿什本青岛马湾Highcharts.com
计量
  • 文章访问数:  546
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2021-08-30
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录