中国自然资源航空物探遥感中心主办
地质出版社出版

多特征准则融合的遥感图像脉冲噪声的识别处理

马晓剑, 赵法舜, 刘艳宾. 2022. 多特征准则融合的遥感图像脉冲噪声的识别处理. 自然资源遥感, 34(3): 17-26. doi: 10.6046/zrzyyg.2021319
引用本文: 马晓剑, 赵法舜, 刘艳宾. 2022. 多特征准则融合的遥感图像脉冲噪声的识别处理. 自然资源遥感, 34(3): 17-26. doi: 10.6046/zrzyyg.2021319
MA Xiaojian, ZHAO Fashun, LIU Yanbin. 2022. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images. Remote Sensing for Natural Resources, 34(3): 17-26. doi: 10.6046/zrzyyg.2021319
Citation: MA Xiaojian, ZHAO Fashun, LIU Yanbin. 2022. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images. Remote Sensing for Natural Resources, 34(3): 17-26. doi: 10.6046/zrzyyg.2021319

多特征准则融合的遥感图像脉冲噪声的识别处理

  • 基金项目:

    中央高校基本科研业务费专项资金项目“证据理论融合算法在图像处理中的研究与应用”(2572018BC21)

详细信息
    作者简介: 马晓剑(1977-),女,副教授,主要从事图像处理研究。Email: mxjzy@nefu.edu.cn
  • 中图分类号: TP391.41

Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images

  • 消除脉冲噪声,获取高质量的遥感图像对应用研究有着重要意义。消除高密度脉冲噪声的同时,保持原有遥感图像的边缘细节信息一直是这一领域中的难题。该文认为被脉冲噪声冲击后的图像会出现不确定性突变,为了解决这种不确定性问题,基于证据理论,利用脉冲噪声的多个特征进行了不确定性建模; 融合了BJS散度和信度熵,给出新的权重分配,得到了新的概率指派; 再根据融合规则和概率转换,给出噪声与信号点的分类依据,从而有效降低了高度冲突发生的可能性。实验结果表明,在噪声密度达到90%以上时,该文提出的方法仍然有效,且在消噪后的遥感图像中对不同地物信息的细节保持良好。
  • 加载中
  • [1]

    赵洪臣, 周兴华, 彭聪, 等. 一种去除遥感影像混合噪声的集成BM3D方法[J]. 武汉大学学报(信息科学版), 2019, 44(6):925-932.

    [2]

    Zhao H C, Zhou X H, Peng C et al. An integrated BM3D method for removing mixed noise in remoting sensing image[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6):925-932.

    [3]

    汪贵平, 杜晶晶, 宋京, 等. 基于梯度倒数的无人机遥感图像融合滤波方法[J]. 科学技术与工程, 2018, 18(31):190-194.

    [4]

    Wang G P, Du J J, Song J, et al. A fusion filter method for unmanned aerial vehicle remote sensing image based on gradient inverse[J]. Science Technology and Engineering, 2018, 18(31):190-194.

    [5]

    朱建军, 周靖鸿, 周璀, 等. 一种新的去除遥感影像混合噪声组合滤波方法[J]. 武汉大学学报(信息科学版), 2017, 42(3):348-354.

    [6]

    Zhu J J, Zhou J H, Zhou C, et al. A new combination filtering method to removing mixed noise of remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):348-354.

    [7]

    刘帅. 基于分层稀疏学习和协同表示的高光谱图像去噪和分类[D]. 西安: 西安电子科技大学, 2016.

    [8]

    Liu S. Hierarchical sparse learning and collaborative representation for hyperspectral imagery restoration and classification[D]. Xi’an: Xidian University, 2016.

    [9]

    Srinivasan K S, Ebenezer D. A new fast and efficient decision-based algorithm for removal of high-density impulse noises[J]. IEEE Signal Processing Letters, 2007, 14(3):189-192.

    [10]

    Jayaraj V, Ebenezer D. A new switching-based median filtering scheme and algorithmfor removal of high density salt and pepper noise in images[J]. Journal on Advances in Signal Processing, 2010(1):409-413.

    [11]

    Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2):325-339.

    [12]

    蒋雯. 邓鑫洋. D-S证据理论信息建模与应用[M]. 北京: 科学出版社, 2018.

    [13]

    Jiang W, Deng X Y. D-S evidence theory information modeling and application[M]. Beijing: Science Press, 2018.

    [14]

    童涛, 杨桄, 李昕, 等. 基于D-S证据理论的多特征融合SAR图像目标识别方法[J]. 国土资源遥感, 2013, 25(2):37-41.doi: 10.6046/gtzyyg.2013.02.07.

    [15]

    Tong T, Yang G, Li X, et al. Recognition method of multi-feature fusion based on D-S evidence theory in SAR image[J]. Remote Sensing for Land and Resources, 2013, 25(2):37-41.doi: 10.6046/gtzyyg.2013.02.07.

    [16]

    李华朋, 张树清, 孙妍. 证据理论结合遥感分类数据能力定量评价研究[J]. 国土资源遥感, 2011, 23(1):26-32.doi: 10.6046/gtzyyg.2011.01.05.

    [17]

    Li H P, Zhang S Q, Sun Y. The quantitative evaluation of remoting sensing data for supervised evidential classification[J]. Remote sensing for Land and Resources, 2011, 23(1):26-32.doi: 10.6046/gtzyyg.2011.01.05.

    [18]

    Zhang Z, Han D, Dezert J, et al. A new adaptive switching median filter for impulse noise reduction with predetection based on evidential reasoning[J]. Signal Processing, 2018(147):173-189.

    [19]

    Ng P E, Ma K. A switching median filter with boundary discriminative noise detection for extremely corrupted images[J]. IEEE Transactions on Image Processing, 2006, 15(6):1506-1516.

    [20]

    Han D, Dezert J, Duan Z. Evaluation of probability transformations of belief functions fordecision making[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2016, 46(1):93-108.

    [21]

    Irpino R V. Dynamic clustering of interval data using a wasserstein based distance[J]. Pattern Recognition Letter, 2008, 29(11):1648-1658.

    [22]

    钱晓亮, 郭雷, 余博. 基于目标尺度的自适应高斯滤波[J]. 计算机工程与应用, 2010, 46(12):14-16.

    [23]

    Qian X L, Guo L, Yu B. Adaptive Gaussian filter based on object scale[J]. Computer Engineering and Applications, 2010, 46(12):14-16.

    [24]

    Xiao F. Multi-sensor data fusion based on the belief divergence measure of evidencesand the belief entropy[J]. Information Fusion, 2019,(46):23-32.

    [25]

    Deng Y. Deng entropy[J]. Chaos,Solitons & Fractals, 2016(91):549-553.

    [26]

    Jafar I F, AlNa’mneh R A, Darabkh K A. Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise[J]. IEEE Transactios on Image Processing, 2013, 22(3):1223-1232.

    [27]

    Zhao B, Zhong Y, Xia G S, et al. Dirichlet-derived multiple topic scene classification model fusing heterogeneous features for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2108-2123.

    [28]

    Zhao B, Zhong Y, Zhang L, et al. The fisher kernel coding framework for high spatial resolution scene classification[J]. Remote Sensing, 2016, 8(2):157-176.

    [29]

    Zhu Q, Zhong Y, Zhao B, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):747-751.

    [30]

    Haidi I, Nicholas S P K, Theam F N. Simple adaptive median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Consumer Electronics, 2008, 544(4):1920-1927.

  • 加载中
计量
  • 文章访问数:  657
  • PDF下载数:  207
  • 施引文献:  0
出版历程
收稿日期:  2021-09-30
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录