A method for vector geographic information acquisition based on synchronous correction with remote sensing images
-
摘要: 针对现有的基于遥感影像的矢量地理信息采集存在的局限性,提出一种随遥感影像同步纠正的矢量地理信息采集方法。首先不对原始遥感影像进行高精度正射纠正处理,矢量地理信息采集直接基于原始遥感影像进行; 待矢量地理信息采集完成后,再对原始遥感影像进行高精度正射纠正处理; 同时,将矢量地理信息成果按照原始遥感影像正射纠正同一模型、同步纠正,实现遥感影像与矢量地理信息空间坐标系的一致、同步。一方面解决外业调查核查过程中存在的数据安全隐患问题,另一方面有利于改善现有生产工艺流程,提高地理信息采集的时效性。选取平地和山地2种典型地形实验区,以WorldView-2遥感影像为数据源,采用提出的方法实现了矢量地理信息采集。结果表明: 该方法能够保证成果空间定位精度基本满足要求,并能有效解决现有的改进技术方法中可能产生的要素交叉与缝隙问题。Abstract: Given the limitations in the existing vector geographic information acquisition based on remote sensing images, this study proposed a new method, in which the vector geographic information is orthorectified synchronously with remote sensing images. Firstly, the original remote sensing images are no longer processed using high-precision orthorectification, and vector geographic information acquisition is directly carried out based on the original remote sensing images. The original remote sensing images are processed using high-precision orthorectification after the vector geographic information acquisition. Moreover, the vector geographic information is synchronously corrected using the same model based on the original remote sensing images, thus achieving the consistency and synchronization between the remote sensing images and vector geographic information. This method can eliminate the potential risks in data security in the process of field investigation and can help optimize the existing production process and improve the timeliness of vector geographic information acquisition. Taking WorldView-2 remote sensing images as the data source, this study performed the vector geographic information acquisition of two selected typical types of terrain, i.e., plain and mountain, using this method. The results show that this method can ensure that the spatial positioning accuracy of the results can roughly meet relevant requirements and can effectively address the problems of the feature intersection and gaps possibly occurring in the existing improved techniques and methods.
-
Key words:
- vector /
- remote sensing image /
- correction /
- RPC /
- process flow
-
[1] 唐新明, 王鸿燕. 资源三号卫星应用分析与展望[J]. 航天器工程, 2016, 25(5):1-10.
[2] Tang X M, Wang H Y. Analysis and prospect of application of ZY-3 satellite[J]. Spacecraft Engineering, 2016, 25(5):1-10.[2] 国务院第一次全国地理国情普查领导小组办公室. 地理国情普查数据采集技术方法[M]. 北京: 测绘出版社, 2013:1-76.
[2] Office of The Leading Group for The First National Geographic Condition Investigation. Technology and method of data collection in national geographic condition investigation[M]. Beijing: SinoMaps Press, 2013:1-76.
[3] 王西萍, 许存玲, 李若, 等. 地理信息数字成果采编一体化流程实现[J]. 测绘标准化, 2017, 33(1):15-17.
[4] Wang X P, Xu C L, Li R, et al. Implementation of collecting and editing integration in the production of geographic information data[J]. Standardization of Surveying and Mapping, 2017, 33(1):15-17.
[5] 程滔, 周旭, 贾云鹏. 地理国情监测与基础测绘联合生产外业作业系统设计思考[J]. 地理信息世界, 2018, 28(4):202-206.
[6] Cheng T, Zhou X, Jia Y P. Design consideration of field surveying system for joint production of geographic national conditions monitoring and basic surveying and mapping[J]. Geomatics World, 2018, 28(4):202-206.
[7] 李虎, 朱恒华, 花卫华, 等. 矢量地理数据安全保护关键技术和方法[J]. 地球科学, 2020, 45(12):4574-4588.
[8] Li H, Zhu H H, Hua W H, et al. Key technologies and methods for vector geographic data security protection[J]. Earth Science, 2020, 45(12):4574-4588.
[9] 王占宏, 吴满意, 田怀启, 等. 单片调绘矢量数据的正射纠正[J]. 测绘通报, 2017(2):75-78.
[10] Wang Z H, Wu M Y, Tian H Q, et al. Ortho-rectification for annotation vector data of single chip image[J]. Bulletin of Surveying and Mapping, 2017(2):75-78.
[11] 申学林, 李见阳, 陈勇, 等. 基于粗纠正卫星影像源进行1:5万DLG生产“一体化”工艺流程的探索[J]. 测绘, 2009, 32(3):130-132.
[12] Shen X L, Li J Y, Chen Y, et al. The technical exploration of 1:50 000 database integrative produce based on rough corrective rsdom[J]. Surveying and Mapping, 2009, 32(3):130-132.
[13] 王春波. 浅谈基于粗纠正影像源进行1:10 000 DLG生产“内外业一体化”工艺流程[J]. 测绘与空间地理信息, 2012, 35(4):178-179.
[14] Wang C B. Discussion on integrated mapping technique for field and indoor work to produce 1:10 000 DLG based on rough corrective images[J]. Geomatics and Spatial Information Technology, 2012, 35(4):178-179.
[15] 秦绪文, 田淑芳, 洪友堂, 等. 无需初值的RPC模型参数求解算法研究[J]. 国土资源遥感, 2005, 17(4):7-10,15.doi: 10.6046/gtzyyg.2005.04.02.
[16] Qin X W, Tian S F, Hong Y T, et al. The algorithm for parameters of RPC model without initial value[J]. Remote Sensing for Land and Resources, 2005, 17(4):7-10,15.doi: 10.6046/gtzyyg.2005.04.02.
[17] 王海侠, 高飞, 胡小华. 基于RPC模型的QuickBird影像正射纠正研究[J]. 现代测绘, 2010, 33(6):13-15.
[18] Wang H X, Gao F, Hu X H. The research about QuickBird images ortho-rectification based on RPC models[J]. Modern Surveying and Mapping, 2010, 33(6):13-15.
[19] 巩丹超, 张永生. 有理函数模型的解算与应用[J]. 测绘学院学报, 2003, 20(1):39-46.
[20] Gong D C, Zhang Y S. The solving and application of rational function model[J]. Journal of Institute of Surveying and Mapping, 2003, 20(1):39-46.
[21] 张过, 李德仁. 卫星遥感影像RPC参数求解算法研究[J]. 中国图象图形学报, 2007, 12(12):2081-2088.
[22] Zhang G, Li D R. The algorithm of computation RPC model’s parameters for satellite imagery[J]. Journal of Image and Graphics, 2007, 12(12):2081-2088.
[23] 刘军, 王冬红, 毛国苗. 基于RPC模型的IKONOS卫星影像高精度立体定位[J]. 测绘通报, 2004(9):1-3.
[24] Liu J, Wang D H, Mao G M. High precision stereo positioning of IKONOS satellite images based on RPC model[J]. Bulletin of Surveying and Mapping, 2004(9):1-3.
[25] 张永生, 刘军. 高分辨率遥感卫星立体影像RPC模型定位的算法及其优化[J]. 测绘工程, 2004, 13(1):1-4.
[26] Zhang Y S, Liu J. The positioning algorithm based on RPC model and its optimizing of stereo images from high resolution remote sensing satellites[J]. Engineering of Surveying and Mapping, 2004, 13(1):1-4.
[27] 陈静波, 宋伟东. 基于有理函数模型的IKONOS单片正射纠正方法研究[J]. 测绘工程, 2008, 17(5):19-22.
[28] Chen J B, Song W D. Research on orthorectification of IKONOS single photo based on rational function model[J]. Engineering of Surveying and Mapping, 2008, 17(5):19-22.
计量
- 文章访问数: 210
- PDF下载数: 46
- 施引文献: 0