中国自然资源航空物探遥感中心主办
地质出版社出版

2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析

朱思佳, 冯徽徽, 邹滨, 叶书朝. 2022. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析. 自然资源遥感, 34(3): 196-206. doi: 10.6046/zrzyyg.2021283
引用本文: 朱思佳, 冯徽徽, 邹滨, 叶书朝. 2022. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析. 自然资源遥感, 34(3): 196-206. doi: 10.6046/zrzyyg.2021283
ZHU Sijia, FENG Huihui, ZOU Bin, YE Shuchao. 2022. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors. Remote Sensing for Natural Resources, 34(3): 196-206. doi: 10.6046/zrzyyg.2021283
Citation: ZHU Sijia, FENG Huihui, ZOU Bin, YE Shuchao. 2022. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors. Remote Sensing for Natural Resources, 34(3): 196-206. doi: 10.6046/zrzyyg.2021283

2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析

  • 基金项目:

    国家自然科学基金面上项目“土地利用/覆盖变化(LUCC)对区域大气污染多尺度影响的水文气象机理”;湖南省自然科学基金优秀青年项目“土地利用/覆盖变化(LUCC)的生态环境响应”(2020JJ3045)

详细信息
    作者简介: 朱思佳(1996-),女,硕士研究生,主要从事自然资源方面研究。Email: 0107150123@csu.edu.cn
  • 中图分类号: TP79

Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors

  • 植被净初级生产力(net primary production,NPP)是流域生态系统的重要评价指标,该文基于2000—2019年MODIS长时序NPP数据产品,分析了洞庭湖流域20 a间植被NPP时空变化规律,进而采用时空分析与地理探测器等方法揭示了气象、地表等驱动因素对研究区植被NPP的影响特征及贡献程度。结果表明: ①洞庭湖流域植被NPP多年均值为0.65 kgC/(m2·a),高值区域主要分布在流域西部及南部,低值区域则主要位于洞庭湖附近; ②2000—2019年,洞庭湖流域植被NPP呈现平稳上升趋势(y=0.003x+0.622 7, R2=0.437,p<0.001),增长区域主要位于流域西北及中部偏南,而减少区域主要在流域东北及西南边界地区,植被NPP重心在平衡发展中呈微弱迁移趋势; ③洞庭湖流域植被NPP变化总体上受气象因素(尤其是气温)影响较显著,但NPP空间特征则主要受土地利用影响,降水与高程次之。此外,不同因子间交互作用显著,主要表现为双因子增强(高程与土地利用或降水)及非线性增强(气温与降水、土地利用或高程,降水与土地利用)2种类型。研究结果有助于正确认识与把握洞庭湖流域NPP时空变化特征及其内在影响机制,从而为流域生态系统管理与治理提供科学的辅助依据。
  • 加载中
  • [1]

    梁顺林, 李小文, 王锦地. 定量遥感:理念与算法[M]. 北京: 科学出版社, 2013.

    [2]

    Liang S L, Li X W, Wang J D. Quantitative remote sensing:Concepts and algorithms[M]. Beijing: Science Publishing Company, 2013.

    [3]

    李登科, 王钊. 基于 MOD17A3 的中国陆地植被 NPP 变化特征分析[J]. 生态环境学报, 2018, 27(3):397-405.

    [4]

    Li D K, Wang Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data[J]. Ecology and Environmental Sciences, 2018, 27(3):397-405.

    [5]

    王莺, 夏文韬, 梁天刚. 陆地生态系统净初级生产力的时空动态模拟研究进展[J]. 草业科学, 2010, 27(2):77-88.

    [6]

    Wang Y, Xia W T, Liang T G. Research progress on spatial-temporal dynamic simulation model of net primary productivity of terrestrial ecosystems[J]. Pratacultural Science, 2010, 27(2):77-88.

    [7]

    周珺. 基于遥感数据的重庆市净初级生产力(NPP)时空特征研究[D]. 重庆: 西南大学, 2013.

    [8]

    Zhou J. Spatial and temporal characteristics of net primary productivity (NPP) in Chongqing based on remote sensing data[D]. Chongqing: Southwest University, 2013.

    [9]

    朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3):413-424.

    [10]

    Zhu W Q, Pan Y Z, Zang J S. Remote sensing estimation of net primary productivity of terrestrial vegetation in China[J]. Journal of Plant Ecology, 2007, 31(3):413-424.

    [11]

    Pan S F, Tian H Q, Dangal S, et al. Modeling and monitoring terrestrial primary production in a changing global environment:Toward a multiscale synthesis of observation and simulation[J]. Advances in Meteorology, 2014, 6426:1-14.

    [12]

    焦伟, 陈亚宁, 李稚. 西北干旱区植被净初级生产力的遥感估算及时空差异原因[J]. 生态学杂志, 2017, 36(1):181-189.

    [13]

    Jiao W, Chen Y N, Li Z. Remote sensing estimation of net primary productivity of vegetation in arid area of Northwest China and its spatio-temporal differences[J]. Chinese Journal of Ecology, 2017, 36(1):181-189.

    [14]

    Robinson N P, Allred B W, Smith W K, et al. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m[J]. Remote Sensing in Ecology and Conservation, 2018, 4(3):264-280.

    [15]

    杨允菲, 祝廷成. 植物生态学(第2版)[M]. 北京: 高等教育出版社, 2011.

    [16]

    Yang Y F, Zhu T C. Plant ecology (2nd Ed.) [M]. Beijing: Higher Education Press, 2011.

    [17]

    Grosso S D, Parton W, Stohlgren T, et al. Global potential net primary production predicted from vegetation class precipitation and temperature[J]. Ecology, 2010, 89(8):2117-2126.

    [18]

    刘凤, 曾永年. 近16年青海高原植被NPP时空格局变化及气候与人为因素的影响[J]. 生态学报, 2019, 39(5):1528-1540.

    [19]

    Liu F, Zeng Y N. Spatial-temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years[J]. Acta Ecologica Sinica, 2019, 39(5):1528-1540.

    [20]

    徐雨晴, 肖风劲, 於琍. 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述[J]. 生态学报, 2020, 40(14):4710-4723.

    [21]

    Xu Y Q, Xiao F J, Yu L. Forest ecosystem net primary productivity and its response to climate change in China:A review[J]. Acta Ecologica Sinica, 2020, 40(14):4710-4723.

    [22]

    刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15):5306-5317.

    [23]

    Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15):5306-5317.

    [24]

    潘瑞炽, 董愚得. 植物生理学[M]. 北京: 高等教育出版社, 1979.

    [25]

    Pan R C, Dong Y D. Plant physiology[M]. Beijing: Higher Education Press, 1979.

    [26]

    张其德. 温度对植物光合作用的影响[J]. 植物杂志, 1989(3):28-30.

    [27]

    Zhang Q D. Effects of temperature on photosynthesis in plants[J]. The Plant Journal, 1989(3):28-30.

    [28]

    张雪萍. 生态学原理[M]. 北京: 科学出版社, 2011.

    [29]

    Zhang X P. Principles of ecology[M]. Beijing: Science Publishing Company, 2011.

    [30]

    黄怀勇, 杜国铨, 范蔚茗, 等. 全流域蓄水与洞庭湖蓄洪能力[J]. 世界科技研究与发展, 2020(s1):42-44.

    [31]

    Huang H Y, Du G Q, Fan W M, et al. Water storage and flood storage capacity of Dongting Lake[J]. World Science and Technology Research and Development, 2020(s1):42-44.

    [32]

    刘恒, 汤弟伟, 宋鄂平, 等. 2000—2015年武陵山区植被净初级生产力的时空动态特征及其驱动因子[J]. 水土保持研究, 2020, 143(6):224-231.

    [33]

    Liu H, Tang D W, Song E P, et al. Temporal and spatial dynamics of vegetation net primary productivity and its driving factors in Wuling Mountain area from 2000 to 2015[J]. Research of Soil and Water Conservation, 2020, 143(6):224-231.

    [34]

    陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10):2511-2527.

    [35]

    Chen S T, Guo B, Yang F, et al. Temporal and spatial patterns of vegetation and its response to climate change in the Tibetan Plateau during 2000—2015[J]. Journal of Natural Resources, 2020, 35(10):2511-2527.

    [36]

    王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.

    [37]

    Wang J F, Xu C D. Geodetectors:Principles and prospects[J]. Journal of Geographical Sciences, 2017, 72(1):116-134.

    [38]

    孟凡超, 郭军, 周莉, 等. 气温,浓度和降水交互作用对作物生长和产量的影响[J]. 应用生态学报, 2017, 28(12):4117-4126.

    [39]

    Meng F C, Guo J, Zhou L, et al. Effects of precipitation and concentration on crop growth and yield[J]. Chinese Journal of Applied Ecology, 2017, 28(12):4117-4126.

    [40]

    Feng H H, Liu Y B, et al. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin[J]. Journal of Hydrology, 2015, 531:1129-1140.

    [41]

    Feng H H, Zou B. A greening world enhances the surface-air temperature difference[J]. Science of the Total Environment, 2019, 658:385-394.

    [42]

    Feng H H, Zou B, Luo J. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics[J]. Journal of Hydrology, 2017, 550:220-229.

    [43]

    孙杰, 范士杰, 臧建飞, 等. 3种全球气压与温度模型的精度对比分析[J]. 测绘科学, 2018, 43(9):63-67,75.

    [44]

    Sun J, Fan S J, Zang J F, et al. Comparative analysis of accuracy of three global pressure and temperature models[J]. Science of Surveying and Mapping, 2018, 43(9):63-67,75.

    [45]

    邓院昌, 刘沙, 余志, 等. 实际地形风场CFD模拟中粗糙度的影响分析[J]. 太阳能学报, 2010(12):1644-1648.

    [46]

    Deng Y C, Liu S, Yu Z, et al. Effect analysis of roughness in CFD simulation of real terrain wind field[J]. Acta Energiae Solaris Sinica, 2010(12):1644-1648.

  • 加载中
计量
  • 文章访问数:  891
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2021-09-03
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录