中国自然资源航空物探遥感中心主办
地质出版社出版

山西省临汾市矿区地表形变InSAR大范围探测与监测

麻学飞, 张双成, 惠文华, 许强. 2022. 山西省临汾市矿区地表形变InSAR大范围探测与监测. 自然资源遥感, 34(3): 146-153. doi: 10.6046/zrzyyg.2021289
引用本文: 麻学飞, 张双成, 惠文华, 许强. 2022. 山西省临汾市矿区地表形变InSAR大范围探测与监测. 自然资源遥感, 34(3): 146-153. doi: 10.6046/zrzyyg.2021289
MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. 2022. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province. Remote Sensing for Natural Resources, 34(3): 146-153. doi: 10.6046/zrzyyg.2021289
Citation: MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. 2022. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province. Remote Sensing for Natural Resources, 34(3): 146-153. doi: 10.6046/zrzyyg.2021289

山西省临汾市矿区地表形变InSAR大范围探测与监测

  • 基金项目:

    国家重点研发计划项目“膨胀土滑坡和工程实时监测方法和早期预警技术”(2019YFC1509802);国家自然科学基金项目“星载GNSS-R遥感解译土壤湿度理论及算法研究”(42074041);陕西省自然科学基础研究项目“地基GNSS遥感解译积雪参数研究”(2020JM-227)

详细信息
    作者简介: 麻学飞(1995-),男,硕士研究生,主要从事InSAR矿区形变监测研究。Email: 516832020@qq.com
  • 中图分类号: TP79

InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province

  • 矿区持续开采造成的地面沉陷会对环境带来巨大的破坏,如何快速获取大范围区域内矿区的位置和地表形变量成为矿区监测亟待解决的问题,为此利用合成孔径雷达干涉测量(interferometry synthetic aperture Radar,InSAR)技术对山西省临汾市开展矿区沉陷大范围探测和监测研究。首先,通过差分合成孔径雷达干涉测量方法(differential interferometric synthetic aperture Rader,D-InSAR)处理分析12景Sentinel-1A升轨数据,对研究区域进行了矿区沉陷灾害大范围探测; 然后利用小基线集(small baseline subset,SBAS)-InSAR处理了不同轨道共432景Sentinel-1A升轨数据,对普查出来的重点区域进行监测。研究结果发现,在临汾市共探测出105处沉陷区,沉陷区均处于临汾断陷盆地两侧的山体中。进一步对重点沉陷区域进行时序形变监测,发现多处沉陷区均处于持续形变过程中,且形变量级较大,最大形变速率达-381 mm/a,对地表生态环境和基础设施带来了巨大的破坏。通过光学影像寻找到了沉陷区附近的开采点,验证了基于InSAR技术的大范围探测与监测方法的可靠性,研究结果可为临汾市矿区沉陷灾害防治提供重要依据。
  • 加载中
  • [1]

    刘国林, 张连蓬, 成枢, 等. 合成孔径雷达干涉测量与全球定位系统数据融合监测矿区地表沉降的可行性分析[J]. 测绘通报, 2005(11):13-16.

    [2]

    Liu G L, Zhang L P, Cheng S, et al. Feasibility analysis of monitoring mining surface substance using InSAR/GPS data fusion[J]. Bulletin of Surveying and Mapping, 2005(11):13-16.

    [3]

    牛玉芬. SAR/InSAR技术用于矿区探测与形变监测研究[D]. 西安: 长安大学, 2015.

    [4]

    Niu Y F. SAR/InSAR technology used in mining area detection and deformation monitoring research[D]. Xi’an: Chang’an University, 2015.

    [5]

    朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144.

    [6]

    Zhu J J, Yang Z F, Li Z W. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144.

    [7]

    朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.

    [8]

    Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.

    [9]

    张凯, 李全生, 戴华阳, 等. 矿区地表移动“空天地”一体化监测技术研究[J]. 煤炭科学技术, 2020, 48(2):207-213.

    [10]

    Zhang K, Li Q S, Dai H Y, et al. Research on integrated monitoring technology and practice of “space-sky-ground” on surface movement in mining area[J]. Coal Science and Technology, 2020, 48(2):207-213.

    [11]

    孙赫, 陈巍然, 牛玉芬, 等. 基于InSAR的矿区沉降中心动态变化监测与分析[J]. 大地测量与地球动力学, 2020, 40(3):276-280.

    [12]

    Sun H, Chen W R, Niu Y F, et al. Monitoring and analysis of dynamic change of mining subsidence center based on InSAR[J]. Journal of Geodesy and Geodynamics, 2020, 40(3):276-280.

    [13]

    刘志敏, 李永生, 张景发, 等. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.

    [14]

    Liu Z M, Li Y S, Zhang J F, et al. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. Remote Sensing for Land and Resources, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.

    [15]

    Ge L, Chang H C, Janssen V, et al. Integration of GPS,Radar interferometry and GIS for ground deformation monitoring[J]. GPS Solutions, 2003, 7(1):52-54.

    [16]

    龙四春, 唐涛, 张赵龙, 等. DInSAR集成GPS的矿山地表形变监测研究[J]. 测绘通报, 2014(11):6-10.

    [17]

    Long S C, Tang T, Zhang Z L, et al. On mining ground deformation monitoring based on integration of DInSAR and GPS[J]. Bulletin of Surveying and Mapping, 2014(11):6-10.

    [18]

    蔡杰华, 张路, 董杰, 等. 九寨沟震后滑坡隐患雷达遥感早期识别与形变监测[J]. 武汉大学学报(信息科学版), 2020, 45(11):1707-1716.

    [19]

    Cai J H, Zhang L, Dong J, et al. Detection and monitoring of post-earthquake landslides in Jiuzhaigou using Radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1707-1716.

    [20]

    Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture Radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382.

    [21]

    李锁乐, 吴宏安, 张永红, 等. 包头市地面沉降高分辨率时序InSAR监测[J]. 测绘科学, 2018, 43(9):80-84.

    [22]

    Li S L, Wu H A, Zhang Y H, et al. Land subsidence monitoring in Baotou using high resolution time series InSAR technique from 2013 to 2015[J]. Science of Surveying and Mapping, 2018, 43(9):80-84.

    [23]

    廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014.

    [24]

    Liao M S, Wang T. Time series InSAR technology and application[M]. Beijing: Science Press, 2014.

    [25]

    白泽朝, 靳国旺, 张红敏, 等. 天津地区Sentinel-1A雷达影像PSInSAR地面沉降监测[J]. 测绘科学技术学报, 2017, 34(3):283-288.

    [26]

    Bai Z C, Jin G W, Zhang H M, et al. Subsidence monitoring of Tianjin using PSInSAR technique with Sentinel-1A[J]. Journal of Geomatics Science and Technology, 2017, 34(3):283-288.

    [27]

    朱猛, 董少春, 尹宏伟, 等. 基于SBAS-InSAR方法的苏州地区2007—2010年地表形变时空变化研究[J]. 地球信息科学学报, 2016, 18(10):1418-1427.

    [28]

    Zhu M, Dong S C, Yin H W, et al. Spatial-temporal ground deformation study of Suzhou area from 2007 to 2010 based on the SBAS InSAR method[J]. Journal of Geo-Information Science, 2016, 18(10):1418-1427.

    [29]

    Usai S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4):753-760.

    [30]

    沙永莲, 王晓文, 刘国祥, 等. 基于SBAS-InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3):194-201.doi: 10.6046/zrzyyg.2020026.

    [31]

    Sha Y L, Wang X W, Liu G X, et al. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi coal mine in Hami City,Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3):194-201.doi: 10.6046/zrzyyg.2020026.

    [32]

    李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版), 2018, 43(10):1531-1537.

    [33]

    Li D, Deng K Z, Gao X X, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1531-1537.

    [34]

    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7):967-979.

    [35]

    Li Z H, Song C, Yu C, et al. Application of satellite Radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979.

    [36]

    Usai S, Klees R. SAR interferometry on a very long time scale:A study of the interferometric characteristics of man-made features[J]. Geoscience & Remote Sensing IEEE Transactions on, 1999, 37(4):2118-2123.

    [37]

    马秀秀, 王雅萍, 程结海, 等. 临汾市近20年植被覆盖度遥感估算及动态变化分析[J]. 能源与环保, 2019, 41(11):11-18.

    [38]

    Ma X X, Wang Y P, Cheng J H, et al. Remote sensing estimation and dynamic change analysis of vegetation coverage in Linfen City in recent 20 years[J]. China Energy and Environmental Protection, 2019, 41(11):11-18.

    [39]

    赵振斌, 韩军青, 陈硕. 临汾市地质灾害及其危害性分析[J]. 山西师范大学学报(自然科学版), 2016, 30(2):117-123.

    [40]

    Zhao Z B, Han J Q, Chen S. Analysis of geological disasters and its harmfulness in Linfen[J]. Journal of Shanxi Normal University(Natural Science Edition), 2016, 30(2):117-123.

  • 加载中
计量
  • 文章访问数:  637
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2021-09-13
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录