Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing
-
摘要: 地面沉降是地表高程下降的一种自然地质现象,若发生在人口密集、社会发展程度较高的城市,将对城市基础设施具有严重的破坏性,威胁着城市安全。地面沉降演化特征分析可以反映其对地面基础设施的影响程度,建立一个高效的地面沉降预测模型对于地面沉降的防治和保障城市安全有着重要意义。首先,利用永久散射体合成孔径雷达干涉测量方法(persistent scatterer interferometric synthetic aperture Radar,PS-InSAR)获取到地面沉降时空信息,且与水准验证得到较高的精度。其次,利用经验正交函数对地面沉降场整体时空特性进行分析,发现研究区域空间模态1方差贡献率很大,几乎代表研究区域空间的整体演化情况,对应时间系数线性趋势显著; 模态2有一定的方差贡献率,但占比很小,对应的时间系数季节性显著。最后,分别利用长短期记忆(long short term memory,LSTM)与嵌入注意机制的长短期记忆(Attention-LSTM)模型对区域地面沉降进行时序预测,发现Attention-LSTM模型优于LSTM模型,其均方误差损失函数(mean square error loss,MSE-loss)可低至0.01。该预测方法扩大了深度学习在地面沉降研究方面的应用。
-
关键词:
- 地面沉降 /
- 经验正交函数 /
- 演化特征 /
- Attention-LSTM /
- 时序预测
Abstract: Land subsidence is a natural geological phenomenon in which the surface elevation drops. It can severely destroy urban infrastructure and threaten urban safety if it occurs in densely populated cities with a high social development degree. The analysis of the evolution characteristics of land subsidence can reflect the degree of the influence of land subsidence on the ground infrastructures, and building an efficient land subsidence prediction model is of great significance for preventing and controlling land subsidence and protecting urban safety. This study obtained the spatial-temporal information on land subsidence using the persistent scatterer interferometric synthetic aperture Radar (PS-InSAR) method first and then verified the information using leveling to get high precision. Then, this study analyzed the general spatial-temporal characteristics of the land subsidence field using an empirical orthogonal function. The analysis results are as follows. Spatial modal No. 1 had a high variance contribution rate, almost representing the general spatial evolution of the study area. Its corresponding time coefficient showed a significant linear trend. By contrast, spatial mode No. 2 had a low variance contribution rate and a seasonally significant time coefficient. Finally, the time series of the regional land subsidence were predicted using both long short-term memory (LSTM) and Attention-LSTM models. The prediction results indicate that the Attention-LSTM model was superior to the LSTM model, with the mean square error loss (MSE-loss) of as low as 0.01. This prediction method expands the application of deep learning in the study of land subsidence. -
-
[1] 周飞飞. 《全国地面沉降防治规划(2011—2020年)》解读——访国土资源部地质环境司副司长陶庆法[J]. 中国应急管理, 2012(3):58-61.
[2] Zhou F F. Interpretation of the national plan for land subsidence prevention and control (2011—2020):Interview with Tao Qingfa,deputy director of the department of geological environment,Ministry of Land and Resources[J]. China Emergency Management, 2012(3):58-61.
[3] 叶晓宾. 华北平原地面沉降经济损失评估[M]. 北京: 中国大地出版社, 2006.
[4] Ye X B. Evaluation of economic loss of land subsidence in the North China Plain[M]. Beijing: China Land Publishing House, 2006.
[5] 刘国祥. InSAR系列讲座6 InSAR应用实例及其局限性分析[J]. 四川测绘, 2005, 28(3):139-143.
[6] Liu G X. Application examples of InSAR and its limitation analysis[J]. Surveying and Mapping of Sichuan, 2005, 28(3):139-143.
[7] Zebker H A, Goldstein R M. Topographic mapping from interferometric synthetic aperture Radar observations[J]. Journal of Geophysical Research Solid Earth, 1986, 91(b5):4993-4999.
[8] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by Radar interferometry[J]. Nature, 1993, 364(6433):138-142.
[9] 宫辉力, 张有全, 李小娟. 基于永久散射体雷达干涉测量技术的北京市地面沉降研究[J]. 自然科学进展, 2009, 19(11):1261-1266.
[10] Gong H L, Zhang Y Q, Li X J. Beijing land subsidence research based on permanent scatterer Radar interferometry technology[J]. Advances in Natural Science, 2009, 19(11):1261-1266.
[11] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas:Differential Radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(b7):9183-9191.
[12] Hanssen R F. Radar interferometry[M]. Springer Netherlands, 2001.
[13] Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping[M]. Wiley-Interscience, 1985.
[14] Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interfero-metric synthetic aperture Radar surface deformation and topographic maps[J]. Journal of Geophysical Research Solid Earth, 1997, 102(b4):7547-7563.
[15] Ferretti A, Prati C. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
[16] 周超凡, 宫辉力, 陈蓓蓓, 等. 北京市典型地区地面沉降空间格局分析[J]. 遥感信息, 2017, 32(4):24-29.
[17] Zhou C F, Gong H L, Chen B B, et al. Spatial pattern of land subsidence in Beijing typical areas[J]. Remote Sensing Information, 2017, 32(4):24-29.
[18] Zuo J J, Gong H L, Chen B B, et al. Time-series evolution patterns of land subsidence in the Eastern Beijing Plain,China[J]. Remote Sensing, 2019, 11(5): 539.
[19] 杨翠玉, 王彦兵, 赵亚丽, 等. 北京来广营地区地面沉降时空演化特征[J]. 遥感信息, 2020, 35(5):138-143.
[20] Yang C Y, Wang Y B, Zhao Y L, et al. Temporal and spatial characteristics of land subsidence in Laiguangying,Beijing[J]. Remote Sensing Information, 2020, 35(5):138-143.
[21] Zhou Q H, Hu Q W, Ai M Y, et al. An improved GM (1,3) model combining terrain factors and neural network error correction for urban land subsidence prediction[J]. Geomatics Natural Hazards and Risk, 2020, 11:212-229.
[22] Nie L, Wang H, Xu Y, et al. A new prediction model for mining subsidence deformation:The arc tangent function model[J]. Natural Hazards, 2015, 75(3):2185-2198.
[23] 杨天亮, 许言. 国际地面沉降与城市安全研究动态——第一届国际城市地质学术研讨会综述[J]. 上海国土资源, 2017, 38(2):1-3.
[24] Yang T L, Xu Y. Research trends in international land subsidence and urban security:An overview of the first international symposium on urban geology[J]. Shanghai Land and Resources, 2017, 38(2):1-3.
[25] Deng Z, Ke Y, Gong H, et al. Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model[J]. Giscience and Remote Sensing, 2017, 54(6):1-22.
[26] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3):396-404.
[27] Liu Q H, Zhang Y H, Deng M, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3):396-404.
[28] 岳振华, 沈涛, 毛曦, 等. 循环神经网络的地面沉降预测方法[J]. 测绘科学, 2020, 45(12):149-156.
[29] Yue Z H, Shen T, Mao X, et al. Ground subsidence prediction method based on recurrent neural network[J]. Science of Surveying and Mapping, 2020, 45(12):149-156.
[30] 刘予. 北京市地面沉降区含水层和压缩层组划分及地面沉降自动监测系统[D]. 长春: 吉林大学, 2004.
[31] Liu Y. Divided water-bearing zones and compressible zones of Beijing land subsidence area and land subsidence automatic monitoring system[D]. Changchun: Jilin University, 2004.
[32] 周毅, 罗郧, 郭高轩, 等. 冲洪积平原地面沉降特征及主控因素——以北京平原为例[J]. 地质通报, 2016, 35(12):2100-2110.
[33] Zhou Y, Luo Y, Guo G X, et al. A study of the characteristics of land subsidence and the main control factors in the alluvial plain:A case study of Beijing Plain[J]. Geological Bulletin of China, 2016, 35(12):2100-2110.
[34] 程凌鹏, 王新惠, 张琦伟, 等. 南水进京对北京地面沉降的影响及趋势分析[J]. 人民黄河, 2018, 40(5):93-97.
[35] Cheng L P, Wang X H, Zhang Q W, et al. Influence of transferring Yangtze River water into Beijing on ground subsidence and trend analysis[J]. Yellow River, 2018, 40(5):93-97.
[36] 刘媛媛. 基于多源SAR数据的时间序列InSAR地表形变监测研究[D]. 西安: 长安大学, 2014.
[37] Liu Y Y. Research on time series InSAR surface deformation monitoring based on multi-source SAR Data[D]. Xi’an: Chang’an University, 2014.
[38] Lorenz E N. Empirical orthogonal functions and statistical weather prediction[M]. Cambridge: Massachusetts Institute of Technology, Department of Meteorology, 1956:1,52.
[39] Asoka A, Gleeson T, Wada Y, et al. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India[J]. Nature Geoscience, 2017, 10(2):109-117.
[40] Smith T M, Reynolds R W, Livezey R E, et al. Reconstruction of historical sea surface temperatures using empirical orthogonal functions[J]. Journal of Climate, 1996, 9(6):1403-1420.
[41] Bianchi F M, Maiorino E, Kampffmeyer M C, et al. Recurrent neural networks for short-term load forecasting:An overview and comparative analysis[EB/OL].(2017-05-11) [2018-07-20] https://arxiv.org/pdf/1705.04378.pdf .
-
计量
- 文章访问数: 627
- PDF下载数: 132
- 施引文献: 0