西藏玉龙斑岩铜矿床绢云母族蚀变矿物短波红外光谱特征及对勘查的指示意义

田成华, 杨立强, 和文言, 张少颖, 刘申态, 吴才. 2022. 西藏玉龙斑岩铜矿床绢云母族蚀变矿物短波红外光谱特征及对勘查的指示意义. 沉积与特提斯地质, 42(1): 40-49. doi: 10.19826/j.cnki.1009-3850.2022.01010
引用本文: 田成华, 杨立强, 和文言, 张少颖, 刘申态, 吴才. 2022. 西藏玉龙斑岩铜矿床绢云母族蚀变矿物短波红外光谱特征及对勘查的指示意义. 沉积与特提斯地质, 42(1): 40-49. doi: 10.19826/j.cnki.1009-3850.2022.01010
TIAN Chenghua, YANG Liqiang, HE Wenyan, ZHANG Shaoying, LIU Shentai, WU Cai. 2022. Characteristics of short wave infrared spectroscopy of sericite group minerals and their implications for exploration in the Yulong porphyry copper deposit, Tibet. Sedimentary Geology and Tethyan Geology, 42(1): 40-49. doi: 10.19826/j.cnki.1009-3850.2022.01010
Citation: TIAN Chenghua, YANG Liqiang, HE Wenyan, ZHANG Shaoying, LIU Shentai, WU Cai. 2022. Characteristics of short wave infrared spectroscopy of sericite group minerals and their implications for exploration in the Yulong porphyry copper deposit, Tibet. Sedimentary Geology and Tethyan Geology, 42(1): 40-49. doi: 10.19826/j.cnki.1009-3850.2022.01010

西藏玉龙斑岩铜矿床绢云母族蚀变矿物短波红外光谱特征及对勘查的指示意义

  • 基金项目:

    本文受国家重点研发计划(2019YFA0708603)、高等学校学科创新引智计划(BP0719021)、中国地质大学地质过程与矿产资源国家重点实验室专项基金(MSFGPMR201804)联合资助

详细信息
    作者简介: 田成华(1998—),硕士生,矿物学、岩石学、矿床学专业。E-mail: tianchua@foxmail.com
    通讯作者: 杨立强(1971—),教授,博士生导师,主要从事矿床学及矿产普查与勘探的教学和科研工作。E-mail: lqyang@cugb.edu.cn
  • 中图分类号: P618.41

Characteristics of short wave infrared spectroscopy of sericite group minerals and their implications for exploration in the Yulong porphyry copper deposit, Tibet

More Information
  • 玉龙斑岩铜矿晚期绢云母化、黏土化蚀变强烈叠加在早期的钾硅酸盐化带内,模糊了蚀变分带特征及其与铜矿化之间的相关性。利用短波红外光谱(SWIR)可快速识别斑岩铜矿床内含羟基蚀变矿物,根据该类矿物的空间分布特征与矿化的对应关系,指导找矿勘查工作。本文对玉龙铜矿床靠近斑岩体中心的三个钻孔进行了详细的蚀变-矿化编录和SWIR分析,在识别出高岭石、蒙脱石、绢云母族矿物(绢云母、多硅白云母)、绿泥石等蚀变矿物的基础上,重点剖析了绢云母族矿物空间分布规律及其与铜矿化之间的相关性。研究表明:深部富铜矿体(Cu>0.6%)紧贴斑岩体侵位中心产出,与绢云母族矿物在空间上紧密伴生,且靠近岩体中心多硅白云母相对发育,绢云母族矿物Al-OH吸收峰值较大(Pos2200>2207 nm)、结晶度较高(IC>2.0);靠近岩体中心外围矿体时,绢云母族矿物Pos2200值相对较小(2206~2207 nm)、IC值相对较低(1.0~2.0)。因此,绢云母族矿物高Pos2200值(> 2207 nm)和高IC值(> 2.0)以及多硅白云母的出现可作为紧贴斑岩体外围矿体产出的底界线,而绢云母族矿物相对低的Pos2200值(2206~2207 nm)和较低的IC值(1.0~2.0)可作为深部富铜矿体出现的标志。
  • 加载中
  • Chang, J, Li J W, Selby D, et al., 2017. Geological and Chronological Constraints on the Long-Lived Eocene Yulong Porphyry Cu-Mo Deposit,Eastern Tibet:Implications for the Lifespan of Giant Porphyry Cu Deposits[J] Economic Geology, 112 (7):1719-1746.

    Chang J, Li J W, Audétat A, 2018. Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet:Insights from LA-ICP-MS analysis of fluid inclusions[J].Geochimica et Cosmochimica Acta, 232:181-205.

    Chang, J, Li J W, Selby D, et al., 2017. Geological and Chronological Constraints on the Long-Lived Eocene Yulong Porphyry Cu-Mo Deposit,Eastern Tibet:Implications for the Lifespan of Giant Porphyry Cu Deposits[J] Economic Geology, 112 (7):1719-1746.

    Chang J, Li J W, Audétat A, 2018. Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet:Insights from LA-ICP-MS analysis of fluid inclusions[J].Geochimica et Cosmochimica Acta, 232:181-205.

    Cooke D R, Baker M, Hollings P, et al., 2014. New advances in detecting the distal geochemical footprints of porphyry systems:Epidote mineral chemistry as a tool for vectoring and fertility assessments[J]. Economic Geology Special Publication, 18:1-27.

    Deng J, Yang L Q, Groves D I, et al., 2020.An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Sciences Reviews, 208:103274.

    Duke E F, 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing[J].Geology, 22(7):621-624.

    Graham, Garth E, Kokaly, et al., 2018. Application of Imaging Spectroscopy for Mineral Exploration in Alaska:A Study over Porphyry Cu Deposits in the Eastern Alaska Range[J]. Economic Geology, 113(2):489-510.

    Guo N, Shi W X, Huan Y R, et al., 2018. Alteration mapping and prospecting model construction inthe Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 37(2-3):446-457.

    Harraden C L, McNulty B A, Gregory M J, et al., 2013. Shortwave Infrared Spectral Analysis of Hydro thermal Alteration Associated with the Pebble PorphyryCopper-Gold-Molybdenum Deposit, Iliamna, Alaska[J]. Economic Geology, 108(3):483-494.

    He W Y, Yang L Q, Brugger J, et al., 2017.Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit western Yunnan, China:Evidence from fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 90:847-862.

    Halley S, Dilles J H, Tosdal R M, 2015.Footprints:Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits[J]. Society of Economic Geologists Newsletter (100):1-17.

    Herrmann W, Blake M, Doyle M, et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis ofHydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland[J]. Economic Geology, 96(5):939-955.

    Hou Z Q, Ma H W, Zaw K,et al., 2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 98(1):125-145.

    Jones S, Herrnumn W, Gemmell J B, 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada[J]. Economic Geology, 100(2):273-294.

    Laakso K,Rivard B, Peter J M, et al., 2016.Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian arctic:Recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake deposit area, Nunavut, Canada[J]. Economic Geology, 110(4):925-941.

    Liang H Y, Sun W, Su W C, et al., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Economic Geology, 104(4):587-596.

    Neal L C, Wilkinson J J, Mason P J, et al., 2017. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits[J]. Journal of Geochemical Exploration, 184:179-198.

    Ren H, Zheng Y Y, Wu S, et al.,2020. Characteristics of short-wave infrared spectrum and prospecting significance of Demingding Copper and Molybdenum deposit in Xizang province[J]. Earth Science, 45(3):930-944.

    Rusk B, Reed M, 2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana[J].Geology, 30(8):727-727.

    Sun M Y, Monecke T, Reynolds T J, et al., 2020. Understanding the evolution of magmatic-hydrothermal systems based on microtextural relationships, fluid inclusion petrography, and quartz solubility constraints:insights into the formation of the Yulong Cu-Mo porphyry deposit, eastern Tibetan Plateau, China[J]. Mineralium Deposita, 56(5):823-842.

    Thompson A J B, Phoebe L H, Audrey J R. 1999. Alteration Mapping in Exploration:Application of Short Wave Infrared (SWIR) Spectroscopy[C]//Society of Economic Geologists'Newsletter 39:1-27.

    Yang K, Lian C, Huntington J F,et al., 2005. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China[J]. Mineralium Deposita, 40(3):324-336.

    Yang L Q, Deng J, Guo L N,et al., 2016. Origin and evolution of ore fluid, and gold deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews (72):585-602.

    昌佳,2019.岩浆-热液体系的形成和演化及其对超大型斑岩铜矿床的控制:以西藏玉龙和美国SantaRita 斑岩型铜钼矿床为例[D].武汉:中国地质大学(武汉).

    陈华勇,张世涛,初高彬,等,2019.鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR) 光谱研究与勘查应用[J].岩石学报, 35(12):3629-3643.

    陈寿波,黄宝强,李琛,等,2018新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究[J].地球科学,43(9):2911-2928.

    陈喜连,黄文婷,邹银桥,等,2016.玉龙斑岩铜矿带南段含矿斑岩体锆石U- Pb年龄、地球化学特征及南北段成矿规模差异分析[J].岩石学报,32(8):2522-2534.

    邓军,王庆飞,陈福川,等, 2020.再论三江特提斯复合成矿系统[J].地学前缘(2):106-136.

    郭利果,刘玉平,徐伟,等,2006. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约[J].岩石学报,22 (4):1009-1016.

    郭娜,史维鑫,黄一入,等,2018.基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建[J].地质通报,37(2):446-457.

    侯增谦,钟大赉,邓万明, 2004.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质, 31(1):1-16.

    黄一入,郭娜,郑龙,等, 2017.基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J].地球学报, 38(5):779-789.

    姜耀辉,蒋少涌,凌洪飞,等, 2006.陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J]. 岩石学报, 22(3):697-706.

    李荫清,芮宗瑶,程莱仙, 1981.玉龙斑岩铜-钼-矿床的流体包裹体及成矿作用研究[J].地质学报(3):216-231.

    刘鹤,马宇,任宏,等,2015.福建铁帽山钼矿床围岩蚀变的短波红外光谱学研究[J].矿物学报, 35(2):221-228.

    刘向东,邓军,张良,等, 2019.胶西北寺庄金矿床热液蚀变作用[J].岩石学报, 35(5):1551-1565.

    任欢,郑有业,吴松,等,2020.西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义[J].地球科学, 45(3):930-944.

    孙茂妤,杨志明,2015.西藏玉龙铜矿床成矿斑岩的厘定及地质意义[J].矿物岩石学杂志, 34(4):439-504.

    唐仁鲤,罗怀松,1995.西藏玉龙铜(铝)矿带地质[M].北京:地质出版社, 151-169.

    唐楠,唐菊兴,郭娜,等,2015.短波红外光谱仪在矿床蚀变分带研究中的应用——以西藏荣那斑岩-浅成低温热液矿床为例[J].矿物学报(S1):925-926.

    唐楠,林彬,李玉彬,等,2021.短波红外光谱技术在斑岩-高硫化型浅成低温热液矿床中的应用以——西藏铁格隆南超大型铜(金)矿床为例[J].地质学报,95(8):2613-2627.

    田丰,冷成彪,张兴春,等, 2019.短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J].地球科学, 44(6):2143-2154.

    许超,陈华勇,White N,等,2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及 SWIR 勘查应用研究[J]. 矿床地质, 36(5):1013-1038.

    杨国防, 2012.岩芯光谱测量与蚀变矿物信息提取[D]. 南昌:东华理工大学.

    杨志明,侯增谦,杨竹森,等,2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 31(4):699-717.

    杨志明,侯增谦,周利敏,等,2020.中国斑岩铜矿床中的主要关键矿产[J]. 科学通报, 65(33):3653-3664.

    赵利青,邓军,原海涛,等, 2008.台上金矿床蚀变带短波红外光谱研究[J]. 地质与勘探,44(5):58-63.

    Cooke D R, Baker M, Hollings P, et al., 2014. New advances in detecting the distal geochemical footprints of porphyry systems:Epidote mineral chemistry as a tool for vectoring and fertility assessments[J]. Economic Geology Special Publication, 18:1-27.

    Deng J, Yang L Q, Groves D I, et al., 2020.An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Sciences Reviews, 208:103274.

    Duke E F, 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing[J].Geology, 22(7):621-624.

    Graham, Garth E, Kokaly, et al., 2018. Application of Imaging Spectroscopy for Mineral Exploration in Alaska:A Study over Porphyry Cu Deposits in the Eastern Alaska Range[J]. Economic Geology, 113(2):489-510.

    Guo N, Shi W X, Huan Y R, et al., 2018. Alteration mapping and prospecting model construction inthe Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 37(2-3):446-457.

    Harraden C L, McNulty B A, Gregory M J, et al., 2013. Shortwave Infrared Spectral Analysis of Hydro thermal Alteration Associated with the Pebble PorphyryCopper-Gold-Molybdenum Deposit, Iliamna, Alaska[J]. Economic Geology, 108(3):483-494.

    He W Y, Yang L Q, Brugger J, et al., 2017.Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit western Yunnan, China:Evidence from fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 90:847-862.

    Halley S, Dilles J H, Tosdal R M, 2015.Footprints:Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits[J]. Society of Economic Geologists Newsletter (100):1-17.

    Herrmann W, Blake M, Doyle M, et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis ofHydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland[J]. Economic Geology, 96(5):939-955.

    Hou Z Q, Ma H W, Zaw K,et al., 2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 98(1):125-145.

    Jones S, Herrnumn W, Gemmell J B, 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada[J]. Economic Geology, 100(2):273-294.

    Laakso K,Rivard B, Peter J M, et al., 2016.Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian arctic:Recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake deposit area, Nunavut, Canada[J]. Economic Geology, 110(4):925-941.

    Liang H Y, Sun W, Su W C, et al., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Economic Geology, 104(4):587-596.

    Neal L C, Wilkinson J J, Mason P J, et al., 2017. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits[J]. Journal of Geochemical Exploration, 184:179-198.

    Ren H, Zheng Y Y, Wu S, et al.,2020. Characteristics of short-wave infrared spectrum and prospecting significance of Demingding Copper and Molybdenum deposit in Xizang province[J]. Earth Science, 45(3):930-944.

    Rusk B, Reed M, 2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana[J].Geology, 30(8):727-727.

    Sun M Y, Monecke T, Reynolds T J, et al., 2020. Understanding the evolution of magmatic-hydrothermal systems based on microtextural relationships, fluid inclusion petrography, and quartz solubility constraints:insights into the formation of the Yulong Cu-Mo porphyry deposit, eastern Tibetan Plateau, China[J]. Mineralium Deposita, 56(5):823-842.

    Thompson A J B, Phoebe L H, Audrey J R. 1999. Alteration Mapping in Exploration:Application of Short Wave Infrared (SWIR) Spectroscopy[C]//Society of Economic Geologists'Newsletter 39:1-27.

    Yang K, Lian C, Huntington J F,et al., 2005. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China[J]. Mineralium Deposita, 40(3):324-336.

    Yang L Q, Deng J, Guo L N,et al., 2016. Origin and evolution of ore fluid, and gold deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews (72):585-602.

    昌佳,2019.岩浆-热液体系的形成和演化及其对超大型斑岩铜矿床的控制:以西藏玉龙和美国SantaRita 斑岩型铜钼矿床为例[D].武汉:中国地质大学(武汉).

    陈华勇,张世涛,初高彬,等,2019.鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR) 光谱研究与勘查应用[J].岩石学报, 35(12):3629-3643.

    陈寿波,黄宝强,李琛,等,2018新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究[J].地球科学,43(9):2911-2928.

    陈喜连,黄文婷,邹银桥,等,2016.玉龙斑岩铜矿带南段含矿斑岩体锆石U- Pb年龄、地球化学特征及南北段成矿规模差异分析[J].岩石学报,32(8):2522-2534.

    邓军,王庆飞,陈福川,等, 2020.再论三江特提斯复合成矿系统[J].地学前缘(2):106-136.

    郭利果,刘玉平,徐伟,等,2006. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约[J].岩石学报,22 (4):1009-1016.

    郭娜,史维鑫,黄一入,等,2018.基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建[J].地质通报,37(2):446-457.

    侯增谦,钟大赉,邓万明, 2004.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质, 31(1):1-16.

    黄一入,郭娜,郑龙,等, 2017.基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J].地球学报, 38(5):779-789.

    姜耀辉,蒋少涌,凌洪飞,等, 2006.陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J]. 岩石学报, 22(3):697-706.

    李荫清,芮宗瑶,程莱仙, 1981.玉龙斑岩铜-钼-矿床的流体包裹体及成矿作用研究[J].地质学报(3):216-231.

    刘鹤,马宇,任宏,等,2015.福建铁帽山钼矿床围岩蚀变的短波红外光谱学研究[J].矿物学报, 35(2):221-228.

    刘向东,邓军,张良,等, 2019.胶西北寺庄金矿床热液蚀变作用[J].岩石学报, 35(5):1551-1565.

    任欢,郑有业,吴松,等,2020.西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义[J].地球科学, 45(3):930-944.

    孙茂妤,杨志明,2015.西藏玉龙铜矿床成矿斑岩的厘定及地质意义[J].矿物岩石学杂志, 34(4):439-504.

    唐仁鲤,罗怀松,1995.西藏玉龙铜(铝)矿带地质[M].北京:地质出版社, 151-169.

    唐楠,唐菊兴,郭娜,等,2015.短波红外光谱仪在矿床蚀变分带研究中的应用——以西藏荣那斑岩-浅成低温热液矿床为例[J].矿物学报(S1):925-926.

    唐楠,林彬,李玉彬,等,2021.短波红外光谱技术在斑岩-高硫化型浅成低温热液矿床中的应用以——西藏铁格隆南超大型铜(金)矿床为例[J].地质学报,95(8):2613-2627..

    田丰,冷成彪,张兴春,等, 2019.短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J].地球科学, 44(6):2143-2154.

    许超,陈华勇,White N,等,2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及 SWIR 勘查应用研究[J]. 矿床地质, 36(5):1013-1038.

    杨国防, 2012.岩芯光谱测量与蚀变矿物信息提取[D]. 南昌:东华理工大学.

    杨志明,侯增谦,杨竹森,等,2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 31(4):699-717.

    杨志明,侯增谦,周利敏,等,2020.中国斑岩铜矿床中的主要关键矿产[J]. 科学通报, 65(33):3653-3664.

    赵利青,邓军,原海涛,等, 2008.台上金矿床蚀变带短波红外光谱研究[J]. 地质与勘探,44(5):58-63.

  • 加载中
计量
  • 文章访问数:  2277
  • PDF下载数:  105
  • 施引文献:  0
出版历程
收稿日期:  2021-10-28
修回日期:  2022-01-05

目录