中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

泥岩岩石热解分析标准物质研制

刘杰, 赵志明, 阎荣辉, 黄子舰. 泥岩岩石热解分析标准物质研制[J]. 岩矿测试, 2023, 42(1): 203-212. doi: 10.15898/j.cnki.11-2131/td.202201120008
引用本文: 刘杰, 赵志明, 阎荣辉, 黄子舰. 泥岩岩石热解分析标准物质研制[J]. 岩矿测试, 2023, 42(1): 203-212. doi: 10.15898/j.cnki.11-2131/td.202201120008
LIU Jie, ZHAO Zhiming, YAN Ronghui, HUANG Zijian. Preparation of Reference Materials for Rock Evaluation of Mudstone[J]. Rock and Mineral Analysis, 2023, 42(1): 203-212. doi: 10.15898/j.cnki.11-2131/td.202201120008
Citation: LIU Jie, ZHAO Zhiming, YAN Ronghui, HUANG Zijian. Preparation of Reference Materials for Rock Evaluation of Mudstone[J]. Rock and Mineral Analysis, 2023, 42(1): 203-212. doi: 10.15898/j.cnki.11-2131/td.202201120008

泥岩岩石热解分析标准物质研制

  • 基金项目:
    辽宁省教育厅2019年度科学研究项目“基于大数据下的钻井异常自动预警技术研究”(PZYSTYL04)
详细信息
    作者简介: 刘杰,硕士,工程师,主要从事油气地球化学分析测试等方面研究。E-mail:Lj84-1012@163.com
  • 中图分类号: TV223.1; TU451

Preparation of Reference Materials for Rock Evaluation of Mudstone

  • 岩石热解作为一项油气地球化学检测分析技术,广泛应用于油气勘探,在评价烃源岩生烃潜力和储集岩含油性识别等方面具有快速、经济和有效的特点。岩石热解标准物质用于岩石热解仪的校准和质量监控,以及定量计算烃源岩和储集岩岩石热解分析参数的关键物质基础。目前,岩石热解标准物质相对匮乏,现场录井岩石热解测试中大部分采用量值传递样品进行仪器校准和质量控制,给数据质量带来的一定的不确定性。同时,中国岩石热解标准物质缺少烃源岩评价的重要参数S4,国外岩石热解标准物质只有一个量值不能进行梯度标定,因此无法满足油气勘探中岩石热解分析技术应用和发展需求。鉴于此,本文按照国家标准物质研究标准和规范,研制了5个岩石热解标准物质GBW(E)070323、GBW(E)070324、GBW(E)070325、GBW(E)070326、GBW(E)070327。候选物样品采自鄂尔多斯盆地三叠系延长组、二叠系山西组、太原组和石炭系本溪组的暗色泥岩、油页岩、炭质泥岩。候选物样品经过挑选、杂质处理、颚式破碎、球磨机细磨、粉末过筛200目、混匀机混匀、60Co照射消毒灭菌、均匀性初检合格后封瓶编号。每个候选物随机抽取5×30瓶样品进行均匀性检验,F实测值均小于F0.05(29,60),样品各组内和组间无显著系统差异,均匀性良好。采用直线拟合法进行短期稳定性和长期稳定性检验,拟合直线斜率|b1|<t0.05×S(b1),稳定性良好。由8家实验室采用岩石热解分析方法进行协作定值,全部定值分析数据符合正态分布,得到定值结果和相应的不确定度,定值参数为S2TmaxS4和参考值S1,其中S2量值范围为2.01~11.90mg/g,Tmax量值范围为437~442℃,S4量值范围为9.5~29.9mg/g,各参数量值呈一定梯度,基本覆盖了常规热解分析含量范围。该系列标准物质能满足石油勘探常规油气测试的质量控制的需求。

  • 加载中
  • 图 1  不同取样量对热解各参数测试值的影响

    Figure 1. 

    表 1  候选物均匀性检验结果

    Table 1.  Homogeneity test results for the candidate materials

    候选物编号 参数 平均值
    (x)
    标准偏差
    (S)
    相对标准偏差
    RSD (%)
    单元间方差
    (S12)
    单元内方差
    (S22)
    F实测值
    RJ1 S1 (mg/g) 0.16 0.0072 4.59 0.0001 0.00004 1.74
    S2 (mg/g) 1.99 0.0270 1.36 0.0008 0.0007 1.04
    Tmax (℃) 440 0.9934 0.23 1.0973 0.9333 1.18
    S4 (mg/g) 9.25 0.1802 1.95 0.0337 0.0319 1.05
    RJ2 S1 (mg/g) 0.64 0.0121 1.89 0.0002 0.0001 1.43
    S2 (mg/g) 3.59 0.0701 1.95 0.0052 0.0048 1.09
    Tmax (℃) 442 1.2492 0.28 1.5709 1.5556 1.01
    S4 (mg/g) 17.07 0.2000 1.30 0.0614 0.0438 1.40
    RJ3 S1 (mg/g) 0.17 0.0085 5.03 0.0001 0.0001 1.47
    S2 (mg/g) 5.69 0.0584 1.03 0.0038 0.0032 1.19
    Tmax (℃) 436 0.6800 0.16 0.5686 0.4111 1.38
    S4 (mg/g) 15.01 0.4244 2.83 0.1268 0.2509 0.62
    RJ4 S1 (mg/g) 0.33 0.0213 6.35 0.0005 0.0004 1.05
    S2 (mg/g) 7.37 0.0841 1.14 0.0082 0.0065 1.27
    Tmax (℃) 441 0.8244 0.19 0.7295 0.6556 1.11
    S4 (mg/g) 12.05 0.3805 3.16 0.1107 0.1613 0.69
    RJ5 S1 (mg/g) 1.84 0.0105 6.63 0.5504 0.8365 1.36
    S2 (mg/g) 11.73 0.2212 1.89 0.0576 0.0447 1.29
    Tmax (℃) 441 0.922 0.21 1.0456 0.7556 1.38
    S4 (mg/g) 29.66 0.6478 2.18 0.4381 0.4106 1.07
    下载: 导出CSV

    表 2  候选物长期稳定性检验结果

    Table 2.  Long-term stability test results for the candidate materials

    候选物编号 定值参数 平均值
    (x)
    标准偏差
    (S)
    相对标准偏差
    RSD (%)
    b1 t0.05×S(b1)
    RJ1 S1 (mg/g) 0.17 0.009 5.37 -0.0004 0.0018
    S2 (mg/g) 2.00 0.0683 3.42 -0.0035 0.0215
    Tmax (℃) 441 0.854 0.19 0.0238 0.2257
    S4 (mg/g) 9.26 0.2674 2.89 0.0194 0.0601
    RJ2 S1 (mg/g) 0.63 0.0161 2.55 -0.0001 0.0057
    S2 (mg/g) 3.45 0.1216 3.53 -0.0234 0.0508
    Tmax (℃) 441 0.7696 0.17 -0.0357 0.2244
    S4 (mg/g) 17.08 0.1508 0.88 0.0133 0.0403
    RJ3 S1 (mg/g) 0.17 0.0125 7.60 0.0007 0.0049
    S2 (mg/g) 5.69 0.0730 1.28 0.0059 0.0218
    Tmax (℃) 437 0.8239 0.19 0.0357 0.1871
    S4 (mg/g) 15.19 0.2319 1.53 0.0093 0.0376
    RJ4 S1 (mg/g) 0.34 0.0198 5.86 -0.0013 0.0074
    S2 (mg/g) 7.32 0.1523 2.08 0.001 0.0373
    Tmax (℃) 440 0.9542 0.22 0.0357 0.2133
    S4 (mg/g) 12.18 0.2012 1.65 -0.013 0.0268
    RJ5 S1 (mg/g) 1.83 0.1181 6.45 0.0074 0.0275
    S2 (mg/g) 11.98 0.23 1.92 -0.018 0.0506
    Tmax (℃) 442 0.9927 0.22 -0.0536 0.2624
    S4 (mg/g) 29.4 0.6 2.04 -0.0435 0.2434
    下载: 导出CSV

    表 3  标准物质定值结果及扩展不确定度

    Table 3.  Certified values and expanded uncertainties of the reference materials

    样品编号 液态烃S1参考值(mg/g) 热解烃S2标准值及不确定度(mg/g) 最高热解峰温度Tmax标准值及不确定度(℃) 残余有机碳S4标准值及不确定度(mg/g)
    GBW(E)070323(RJ1) (0.16) 2.01±0.21 440±2 9.5±0.8
    GBW(E)070324(RJ2) (0.62) 3.70±0.40 442±2 17.7±1.4
    GBW(E)070325(RJ3) (0.16) 5.85±0.50 437±2 15.5±1.3
    GBW(E)070326(RJ4) (0.31) 7.39±0.50 440±2 12.5±1.2
    GBW(E)070327(RJ5) (1.81) 11.90±0.80 441±2 29.9±3.0
    下载: 导出CSV

    表 4  标准物质验证结果

    Table 4.  Verification results of the reference materials

    样品编号 S2(mg/g) Tmax(℃) S4(mg/g)
    实测值 标准值及不确定度 实测值 标准值及不确定度 实测值 标准值及不确定度
    GBW(E)070323
    (RJ1)
    1.91 2.01±0.21 441 440±2 9.30 9.5±0.8
    GBW(E)070324 (RJ2) 3.58 3.70±0.40 443 442±2 17.25 17.7±1.4
    GBW(E)070325 (RJ3) 5.74 5.85±0.50 437 437±2 15.21 15.5±1.3
    GBW(E)070326 (RJ4) 7.26 7.39±0.50 442 440±2 12.04 12.5±1.2
    GBW(E)070327 (RJ5) 12.15 11.90±0.80 441 441±2 29.33 29.9±3.0
    下载: 导出CSV
  • [1]

    杨宇, 何则. 中国海外油气依存的现状、地缘风险与应对策略[J]. 资源科学, 2020, 42(8): 1614-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202008015.htm

    Yang Y, He Z. China's overseas oil and gas dependence: Situation, geographical risks, and countermeasures[J]. Resources Science, 2020, 42(8): 1614-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202008015.htm

    [2]

    方锡贤. 岩石热解录井技术应用现状及发展思考[J]. 录井工程, 2018, 29(1): 4-8, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ201801004.htm

    Fang X X. Application status and development thinking of rock pyrolysis logging technology[J]. Logging Engineering, 2018, 29(1): 4-8, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ201801004.htm

    [3]

    曾维主. 松辽盆地青山口组页岩孔隙结构与页岩油潜力研究[D]. 北京: 中国科学院大学, 2020.

    Zeng W Z. Pore structure and shale oil potential of Qingshankou Formation shale in Songliao Basin[D]. Beijing: University of Chinese Academy of Sciences, 2020.

    [4]

    张冬梅, 张延延, 郭隽菁, 等. 基于岩石热解参数图版的烃源岩内部排烃效率计算方法[J]. 石油实验地质, 2021, 43(3): 532-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202103019.htm

    Zhang D M, Zhang Y Y, Guo J J, et al. A calculation method for the efficiency of hydrocarbon expulsion based on parameter diagram of source rock pyrolysis[J]. Petroleum Geology & Experiment, 2021, 43(3): 532-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202103019.htm

    [5]

    曹孟贤, 蒋钱涛, 向超. 地化录井定量解释方法在南海东部海域西江凹陷的应用[J]. 复杂油气藏, 2021, 14(1): 36-38, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202101008.htm

    Cao M X, Jiang Q T, Xiang C. Application of quantitative interpretation method of geochemical logging in Xijiang Sag in eastern South China Sea[J]. Complex Hydrocarbon Reservoirs, 2021, 14(1): 36-38, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202101008.htm

    [6]

    李永会, 刘刚, 高亮, 等. 基于岩石热解资料的烃源岩有机碳构成计算方法及应用[J]. 特种油气藏, 2022, 29(2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202202007.htm

    Li Y H, Liu G, Gao L, et al. Calculation method and its application of organic carbon composition of source rocks based on rock pyrolysis data[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202202007.htm

    [7]

    侯连华, 杨帆, 杨春, 等. 常规油气区带与圈闭有效性定量评价原理及方法[J]. 石油学报, 2021, 42(9): 1126-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202109002.htm

    Hou L H, Yang F, Yang C, et al. Principles and methods for quantitative evaluation the effectiveness of conventional petroleum zones and traps[J]. Chinese Journal of Petroleum, 2021, 42(9): 1126-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202109002.htm

    [8]

    段仁春. 岩石热解录井技术在特殊类型储层解释评价中的应用[J]. 当代石油石化, 2019, 27(11): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGD201911006.htm

    Duan R C. Application of rock pyrolysis logging technology in interpretation and evaluation of special reservoirs[J]. Contemporary Petroleum and Petrochemical, 2019, 27(11): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGD201911006.htm

    [9]

    张振苓, 邬立言, 马文玲, 等. 岩石热解标准物质的研制[C]//第四届全国石油地质实验技术及实验室管理工作交流会议论文集, 2002: 188-193.

    Zhang Z L, Wu L Y, Ma W L, et al. Development of reference materials for rock pyrolysis[C]//Proceedings of the Fourth National Exchange Conference on Petroleum Geology Experiment Technology and Laboratory Management, 2002: 188-193.

    [10]

    杨佳佳, 孙玮琳, 徐学敏, 等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11): 3515-3522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202011023.htm

    Yang J J, Sun W L, Xu X M, et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11): 3515-3522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202011023.htm

    [11]

    贾浪波, 钟大康, 孙海涛, 等. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义[J]. 沉积学报, 2019, 37(5): 1087-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905018.htm

    Jia L B, Zhong D K, Sun H T, et al. Sediment provenance analysis and tectonic implication of the Benxi Formation, Ordos Basin[J]. Acta Sedimentologica Sinca, 2019, 37(5): 1087-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905018.htm

    [12]

    韩载华, 赵靖舟, 孟选刚, 等. 鄂尔多斯盆地三叠纪湖盆东部"边缘"长7段烃源岩的发现及其地球化学特征[J]. 石油实验地质, 2020, 42(6): 991-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202006015.htm

    Han Z H, Zhao J Z, Meng X G, et al. Discovery and geochemical characteristics of Chang 7 source rocks from the eastern margin of a Triassic lacustrine basin in the Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(6): 991-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202006015.htm

    [13]

    王传刚. 鄂尔多斯盆地海相烃源岩的成藏有效性分析[J]. 地学前缘, 2012, 19(1): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201028.htm

    Wang C G. Availability analysis of oil pool forming for marine source rock in Ordos Basin[J]. Earth Science Frontiers, 2012, 19(1): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201028.htm

    [14]

    张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105008.htm

    Zhang Y X. Source rock characteristion: The dark mudstone Chang 7 Member of Triassic, central Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1089-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105008.htm

    [15]

    吉利明, 李剑锋, 张明震, 等. 鄂尔多斯盆地延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响[J]. 地学前缘, 2021, 28(1): 388-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101037.htm

    Ji L M, Li J F, Zhang M Z, et al. Effects of the lacustrine hydrothermal activity in the Yanchang Period on the abundance and type of organic matter in source rocks in the Ordos Basin[J]. Earth Science Frontiers, 2021, 28 (1): 388-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101037.htm

    [16]

    肖晖, 赵靖舟, 熊涛, 等. 鄂尔多斯盆地古隆起西侧奥陶系烃源岩评价及成藏模式[J]. 石油与天然气地质, 2017, 38(6): 1087-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706011.htm

    Xiao H, Zhao J Z, Xiong T, et al. Evaluation of Ordovician source rocks and natural gas accumulation patterns in west flank of paleo-uplift, Ordos Basin[J]. Oil & Gas Geology, 2017, 38(6): 1087-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706011.htm

    [17]

    黄彦杰, 白玉彬, 孙兵华, 等. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202001007.htm

    Huang Y J, Bai Y B, Sun B H, et al. Characteristics and evaluation of Chang 7 source rocks in Yanchang Formation, Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202001007.htm

    [18]

    黄军平, 李相博, 何文祥, 等. 鄂尔多斯盆地南缘下寒武统高丰度烃源岩发育特征与油气勘探方向[J]. 海相油气地质, 2020, 25(4): 319-326. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004004.htm

    Huang J P, Li X B, He W X, et al. Development characteristics of high-abundance source rocks of the lower Cambrian and direction of oil and gas exploration in southern margin Ordos Basin[J]. Marine Oil and Gas Geology, 2020, 25(4): 319-326. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004004.htm

    [19]

    Behar F, Beaumont V, de Penteado H L D B. Rock-eval 6 technology: Performances and developments[J]. Oil & Gas Science and Technology, 2001, 56(2): 111-134.

    [20]

    邬立言, 丁莲花, 李斌, 等. 油气储集岩热解快速定性定量评价[M]. 北京: 石油工业出版社, 2000.

    Wu L Y, Ding L H, Li B, et al. Rapid qualitative and quantitative evaluation of oil and gas reservoir rock pyrolysis[M]. Beijing: Petroleum Industry Press, 2000.

    [21]

    王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804-807. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200906015.htm

    Wang Y M, Wang X H, He H L, et al. The minimum sampling amount of geological reference materials[J]. Geological Bulletin, 2009, 28(6): 804-807. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200906015.htm

    [22]

    赵红坤, 于阗, 肖志博, 等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析, 2021, 41(3): 755-762. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103015.htm

    Zhao H K, Yu T, Xiao Z B, et al. Homogeneity test of geochemical certified reference materials by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 755-762. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103015.htm

    [23]

    王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696-703. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103005.htm

    Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696-703. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103005.htm

    [24]

    袁建, 李振涛, 郭冬发. 热液铀矿(火山岩型)成分分析标准物质的研制[J]. 核化学与放射化学, 2018, 40(4): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201804004.htm

    Yuan J, Li Z T, Guo D F. Preparation of certified reference materials for hydrothermal uranium ore-field component analysis[J]. Journal of Nuclear and Radiochemistry, 2018, 40(4): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201804004.htm

    [25]

    王干珍, 彭君, 李力, 等. 锰矿石成分分析标准物质研制[J]. 岩矿测试, 2022, 41(2): 314-323. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202104080051

    Wang G Z, Peng J, Li L, et al. Preparation of standard material for standard material for composition analysis of manganese ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314-323. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202104080051

    [26]

    王尧, 田衎, 封跃鹏, 等. 土壤中总有机碳环境标准样品研制[J]. 岩矿测试, 2021, 40(4): 593-602. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101150009

    Wang Y, Tian K, Feng Y P, et al. Preparation and certification of a soil total organic carbon reference material[J]. Rock and Mineral Analysis, 2021, 40(4): 593-602. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202101150009

    [27]

    任丹华. 原油中有害元素镍钒硫定值方法及标准物质研究[D]. 北京: 中国石油大学(北京), 2020.

    Ren D H. Study on the determination method and reference material of harmful elements nickel, vanadium and sulfur in crude oil[D]. Beijing: China University of Petroleum (Beijing), 2020.

    [28]

    曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201808150094

    Zeng M Y, Chen Y B, Liu J, et al. Preparation of high-phosphorus iron ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201808150094

    [29]

    陈宗定, 许春雪, 刘贵磊, 等. 6种南方酸性土壤重金属元素氯化钙可提取态标准物质研制[J]. 冶金分析, 2021, 41(10): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202110002.htm

    Chen Z D, Xu C X, Liu G L, et al. Development of six extractable certified reference materials of calcium chloride for analysis of heavy metals in southern acid soil[J]. Metallurgical Analysis, 2021, 41(10): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202110002.htm

    [30]

    田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202001070008

    Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202001070008

  • 加载中

(1)

(4)

计量
  • 文章访问数:  1362
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2022-03-24
录用日期:  2022-04-30
刊出日期:  2023-01-28

目录