Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent
-
摘要:
滇东北昭通地区峨眉山玄武岩Nd-Sr-Pb同位素的最新研究结果表明,该区玄武岩样品普遍具有1000~900 Ma的亏损地幔Nd模式年龄,其源区可能为来自下地幔类似地幔集中带(FOZO)组分(10%~40%)的地幔橄榄岩和来自古老再循环洋壳的类似EM1组分(60%~90%)不同比例混合而成。样品满足Dupal异常边界条件,暗示峨眉山玄武岩岩浆形成及侵位时与目前所处的纬度有较大差异,二者可能有较大的空间距离。据此,提出新的峨眉山地幔柱形成模式:1000~900 Ma,源于Rodinia超大陆事件中衍生的洋壳发生了俯冲消减作用,洋壳经部分熔融后的固态残留物在660 km地幔过渡带中堆积,形成较冷的难熔"巨石体"。晚二叠世(约260 Ma),这些"巨石体"(很可能是榴辉岩相的超高压变质岩)受重力驱动作用进一步下沉到核幔边界"D"层时,发生钙钛矿→后钙钛矿的矿物相转变,这是一个强烈的放热反应,导致下地幔及俯冲板片堆积体自身的部分熔融,引起深部高温富铁、富钛的熔融体上涌进入地幔,形成地幔柱。这些岩浆大规模的上涌、喷发,形成了扬子陆块西缘规模巨大的峨眉山大火成岩省(LIPs)。此时古地理位置还处于南半球的某个位置,古特提斯大洋关闭后,这些携带南半球特有的地球化学烙印(Dupal异常)的玄武岩随着扬子板块一路向北漂移,到达今天的位置。
-
关键词:
- 峨眉山玄武岩 /
- Nd-Sr-Pb同位素 /
- 地幔柱 /
- Rodinia超大陆 /
- 洋壳的俯冲、再循环
Abstract:The latest Nd-Sr-Pb isotopes study of Emeishan basalt in the Zhaotong area of northeastern Yunnan Province shows that the basalt samples generally have a 1000~900 Ma Nd model age of depleted mantle. The source could be generated by mixing of different proportions of a recycled ancient oceanic crust component(EM1-like, 60%~90%) and a peridotite component from the lower mantle(FOZO-like component, 10%~40%). The sample satisfies the Dupal anomaly boundary condition, suggesting that the latitude of Emeishan basalt magma formation and emplacement is quite different from the current latitude, and there may exist a large space distance between them. Therefore, a new model for the formation of the Emeishan mantle plume is proposed. During 1000~900 Ma, the oceanic crust derived from the Rodinia supercontinent event subducted and subsided, and the remnants of the oceanic crust piled on the 660 km mantle transition zone to form relatively cold refractory megaliths. In the Late Permian(~260 Ma), these megaliths(probably eclogite facies super-compressive metamorphic rocks) further subsided down to the "D" layer of the core-mantle transition, and resulted in the transformation from perovskite to post-perovskite, which was a strong exothermic reaction resulting in partial melting of lower mantle and subducting plate accumulations themselves, leading to upwelling of high temperature iron and titanium to form the mantle plume. The large scale upwelling and eruption of these magmas formed the large-scale Emeishan Igneous Province(LIPs) in the west of Yangtze block. At this time, the paleogeographic location was still in a certain position in the southern hemisphere. After the closure of the Paleotethys, these basalts bearing the unique geochemical imprint of the southern hemisphere(Dupal anomaly) drifted northward along with the Yangtze plate and reached the present position.
-
-
图 1 峨眉山大火成岩省分布图(据参考文献[23]修改)
Figure 1.
图 3 Pb同位素混合模拟图(图中代号注释见图 2)
Figure 3.
图 4 峨眉山地幔柱演化模式(据参考文献[60]修改)
Figure 4.
表 1 峨眉山玄武岩Pb同位素分析成果
Table 1. Pb isotopic compositions of Emeishan basalts
样品编号 同位素比值 主要参数 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ ω Th/U Δ7/4 Δ8/4 PM002-8-1 17.606 15.570 37.973 8.38 35.29 4.08 17.05 106.03 PM002-11-1 17.638 15.590 38.071 8.41 35.69 4.11 18.70 111.97 PM021-7-1 17.663 15.591 38.067 8.43 35.68 4.09 18.53 108.54 PM021-8-1 17.636 15.625 38.131 8.41 35.94 4.14 22.23 118.21 PM021-11-1 17.692 15.649 38.230 8.46 36.35 4.16 24.02 121.34 PM008-8-1 17.837 15.597 38.315 8.61 36.71 4.13 17.25 112.31 PM002-12-1 17.687 15.555 38.038 8.46 35.56 4.07 14.67 102.74 PM008-13-1 17.589 15.605 38.098 8.36 35.81 4.15 20.74 120.59 PM008-20-1 17.788 15.585 38.167 8.56 36.09 4.08 16.58 103.43 PM021-27-1 17.678 15.619 38.173 8.45 36.12 4.14 21.17 117.33 PM021-44-1 17.689 15.606 38.122 8.46 35.90 4.11 19.75 110.90 PM022-7-1 17.626 15.640 38.225 8.40 36.33 4.19 23.83 128.82 PM002-19-1 17.895 15.473 38.237 8.67 36.38 4.06 4.22 97.49 PM022-15-1 17.677 15.606 38.154 8.45 36.04 4.13 19.88 115.55 PM022-20-1 17.624 15.572 38.016 8.39 35.46 4.09 17.06 108.16 PM002-26-1 17.690 15.530 38.041 8.46 35.57 4.07 12.14 102.68 PM008-26-1 17.572 15.557 37.963 8.34 35.24 4.09 16.12 109.15 PM008-35-1 17.578 15.612 38.113 8.35 35.87 4.16 21.55 123.42 PM022-23-1 17.657 15.619 38.166 8.43 36.09 4.14 21.40 119.17 PM002-29-1 17.578 15.530 37.920 8.35 35.07 4.07 13.35 104.12 PM008-29-1 17.777 15.562 38.143 8.55 35.99 4.07 14.40 102.36 PM002-56-1 17.602 15.578 38.070 8.37 35.69 4.13 17.89 116.22 表 2 昭通地区峨眉山玄武岩Sr同位素分析成果
Table 2. Sr isotopic compositions of Emeishan basalts in the Zhaotong area
样品编号 同位素比值 主要参数 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)0 εSr(t) Rb/Sr ΔSr PM002-8-1 0.1396 0.70658 0.706066 26.66 0.05 60.7 PM002-11-1 0.2836 0.70681 0.705765 22.40 0.10 57.7 PM021-7-1 0.3718 0.70726 0.705890 24.17 0.13 58.9 PM021-8-1 0.1542 0.70617 0.705602 20.08 0.05 56.0 PM021-11-1 0.7069 0.70915 0.706545 33.48 0.25 65.5 PM008-8-1 0.2033 0.70718 0.706431 31.85 0.07 64.3 PM002-12-1 0.1689 0.70607 0.705448 17.89 0.06 54.5 PM008-13-1 0.1985 0.70663 0.705899 24.29 0.07 59.0 PM008-20-1 0.2215 0.70662 0.705804 22.95 0.08 58.0 PM021-27-1 0.1547 0.70631 0.705740 22.04 0.05 57.4 PM021-44-1 0.2007 0.70632 0.705581 19.78 0.07 55.8 PM022-7-1 0.2200 0.70579 0.704979 11.24 0.08 49.8 PM002-19-1 0.1521 0.70719 0.706630 34.67 0.05 66.3 PM022-15-1 0.4582 0.70737 0.705682 21.21 0.16 56.8 PM022-20-1 0.1815 0.70650 0.705831 23.34 0.06 58.3 PM002-26-1 0.2064 0.70640 0.705640 20.61 0.07 56.4 PM008-26-1 0.1201 0.70601 0.705567 19.59 0.04 55.7 PM008-35-1 0.1745 0.70649 0.705847 23.56 0.06 58.5 PM022-23-1 0.1852 0.70639 0.705708 21.58 0.06 57.1 PM002-29-1 0.1783 0.70633 0.705673 21.09 0.06 56.7 PM008-29-1 0.2182 0.70635 0.705546 19.29 0.08 55.5 PM002-56-1 0.3480 0.70822 0.706938 39.05 0.12 69.4 表 3 昭通地区峨眉山玄武岩Nd同位素分析成果
Table 3. Nd isotopic compositions of Emeishan basalts in the Zhaotong area
样品编号 同位素比值 主要参数 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)0 εNd(t) Sm/Nd tDM/Ma PM002-8-1 0.1199 0.512504 0.512301 -0.07 0.20 1049 PM002-11-1 0.1215 0.512540 0.512334 0.58 0.20 1008 PM021-7-1 0.1235 0.512538 0.512329 0.47 0.20 1034 PM021-8-1 0.1217 0.512541 0.512335 0.59 0.20 1009 PM021-11-1 0.1204 0.512480 0.512276 -0.56 0.20 1094 PM008-8-1 0.1170 0.512483 0.512285 -0.39 0.19 1051 PM002-12-1 0.1196 0.512548 0.512345 0.79 0.20 975 PM008-13-1 0.1268 0.512588 0.512373 1.34 0.21 986 PM008-20-1 0.1285 0.512614 0.512396 1.79 0.21 959 PM021-27-1 0.1215 0.512548 0.512342 0.73 0.20 995 PM021-44-1 0.1253 0.512613 0.512401 1.87 0.21 926 PM022-7-1 0.1208 0.512567 0.512362 1.13 0.20 957 PM002-19-1 0.1274 0.512563 0.512347 0.83 0.21 1037 PM022-15-1 0.1287 0.512614 0.512396 1.78 0.21 961 PM022-20-1 0.1303 0.512620 0.512399 1.85 0.22 969 PM002-26-1 0.1284 0.512621 0.512403 1.93 0.21 945 PM008-26-1 0.1255 0.512633 0.512420 2.26 0.21 894 PM008-35-1 0.1232 0.512607 0.512398 1.83 0.20 915 PM022-23-1 0.1310 0.512630 0.512408 2.02 0.22 958 PM002-29-1 0.1257 0.512627 0.512414 2.13 0.21 906 PM008-29-1 0.1282 0.512597 0.512380 1.47 0.21 986 PM002-56-1 0.1276 0.512587 0.512371 1.29 0.21 997 -
[1] Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0
[2] White R S, Mckenzie D P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Geophys. Res., 1989, 94: 7685-7729.
[3] Hill R I. Starting pIume and continentaI break-up[J]. Earth Planet. Sci. Lett., 1991, 104: 398-416. doi: 10.1016/0012-821X(91)90218-7
[4] Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23(10): 889-892. doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
[5] Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup[J]. Earth and Planetary Science Letters, 1999, 166(3): 177-195. http://www.researchgate.net/profile/V_Courtillot/publication/222496393_On_causal_links_between_flood_basalts_and_continental_breakup/links/02bfe514738443c7a3000000
[6] 张招崇. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 2009, 36(3): 634-646. doi: 10.3969/j.issn.1000-3657.2009.03.010
[7] Wignall P B. Large Igneous Provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33. http://www.sciencedirect.com/science/article/pii/S0012825200000374
[8] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601003.htm
[9] 侯增谦, 卢记仁, 林盛中. 峨眉山地幔柱轴部的榴辉岩-地幔岩源区: 主元素、恒量元素及Sr、Nd、Pb同位素证据[J]. 岩石学报, 2005, 79(2): 200-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502009.htm
[10] 张招崇, John J Mahoney, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部分熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606012.htm
[11] 夏林圻, 徐学义, 李向民, 等. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质, 2012, 45(2): 1-26. doi: 10.3969/j.issn.1009-6248.2012.02.001
[12] 李宏博, 张招崇, 李永生, 等. 峨眉山地幔柱轴部位置的讨论[J]. 地质评论, 2013, 59(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302002.htm
[13] 姜寒冰. 峨眉山高钛和低钛玄武岩的岩石成因[D]. 长安大学硕士学位论文, 2006.
[14] 朱炳泉. 全球幔源岩Pb-Sr-Nd同位素体系[J]. 地学前缘, 2007, 14(2): 24-36. doi: 10.3321/j.issn:1005-2321.2007.02.003
[15] 周德进, 沈丽璞, 张旗, 等. 滇西古特提斯构造带玄武岩的Dupar异常[J]. 地球物理学进展, 1995, 10(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ502.003.htm
[16] 刘成英. 峨眉山玄武岩的古地磁研究[D]. 中国科学院大学博士学位论文, 2012.
[17] Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth and Planetary Science Letters, 2002, 198(3): 449-458. http://www.sciencedirect.com/science/article/pii/S0012821X02005356
[18] 赖旭龙, 孙亚东, 江海水. 峨眉山大火成岩省火山活动与中晚二叠世之交生物大灭绝[J]. 中国科学基金, 2009, (6): 353-356. doi: 10.3969/j.issn.1000-8217.2009.06.007
[19] 朱江, 张招崇, 侯通, 等. 贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄: 对峨眉山大火成岩省与生物大规模灭绝关系的约束[J]. 岩石学报, 2011, 27(9): 2743-2751. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109023.htm
[20] 朱江, 张招崇. 大火成岩省与二叠纪两次生物灭绝关系研究进展[J]. 地质论评, 2013, 59(1): 137-148. doi: 10.3969/j.issn.0371-5736.2013.01.015
[21] Ali J R, Thompson G M, Zhou M F, et al. Emeishan Large Igneous Province, SW China[J]. Lithos, 2005, 79(3/4): 475-489. http://www.sciencedirect.com/science/article/pii/S0024493704003196
[22] Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan Large Igneous Province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113(3/4): 369-392. http://www.sciencedirect.com/science/article/pii/S0024493709001650
[23] Ren Z Y, Wu Y D, Le Zhang, et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochimica et Cosmochimica Acta, 2017, 208: 63-85. doi: 10.1016/j.gca.2017.01.054
[24] Ernst R E, Buchan K L, Campbell Ian H. Frontiers in Large Igneous Province research[J]. Lithos, 2005, 79(3/4): 271-297. http://www.sciencedirect.com/science/article/pii/S0024493704003093
[25] Bryan S E, Ernst R E. Revised definition of Large Igneous Province research (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/4): 175-201. http://www.sciencedirect.com/science/article/pii/S0012825207001201
[26] Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Bingchuan section: Implications for the termination age of Emeishan Large Igneous Province[J]. Lithos, 2014, 204(3): 14-19. http://www.sciencedirect.com/science/article/pii/S0024493714000863
[27] 徐义刚, 钟孙霖. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地质化学, 2001, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101001.htm
[28] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4): 341-353. doi: 10.3321/j.issn:1005-2321.2002.04.014
[29] Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contrib Mineral Petrol., 2006, 151: 1-19. doi: 10.1007/s00410-005-0030-y
[30] Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantel[J]. Nature, 1984, 309: 753-757 doi: 10.1038/309753a0
[31] 邢光福. Dupal同位素异常的概念、成因及其地质意义[J]. 火山地质与矿产, 1997, 18(4): 281-291. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199704003.htm
[32] Dupre B, Allegre C J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomema[J]. Nature, 1983, 303: 142-149. doi: 10.1038/303142a0
[33] Xu Y, Chung S, Jahn B, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southern China[J]. Lithos, 2001, 58: 145-168. doi: 10.1016/S0024-4937(01)00055-X
[34] 张招崇, 王福生. 峨眉山玄武岩Sr-Nd-Pb同位素特征及其物源[J]. 地球科学, 2003, 28(4): 431-439. doi: 10.3321/j.issn:1000-2383.2003.04.012
[35] Peng Z, Mahoney J J. Drilling lavas from the northwestern Deccan traps, and the evolution of Reunion hotspot mantle[J]. Earth Planet. Sci. Lett., 1995, 134: 169-185. doi: 10.1016/0012-821X(95)00110-X
[36] Sharma M A, Basu R, Nesternko G V. Temporal Sr-Nd-and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics[J]. Earth Planet. Sci. Lett., 1992, 113: 365-381. doi: 10.1016/0012-821X(92)90139-M
[37] De Paolo D J. Inferences about magma sources and mantle structures using variations of 143Nd/144Nd[J]. Geophys Res Lett.. 1976, 3: 743-746. doi: 10.1029/GL003i012p00743
[38] Mc Culloch M T, Wasserbug G J. Sm-Nd and Rb-Sr chronslogy of continental crust formation[J]. Science, 1978, 200: 1003-1011. doi: 10.1126/science.200.4345.1003
[39] 沈渭洲, 朱金初. 从Nd模式年龄谈华南地壳的形成时间[J]. 南京大学学报(地球科学版), 1990, 3: 82-92.
[40] 李献华, 赵振华. 华南前寒武纪地壳形成的Sm-Nd和U-Pb同位素制约[J]. 地球化学, 1991, 6: 353-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103006.htm
[41] 宋谢炎, 侯增谦, 汪云亮, 等. 峨眉山玄武岩的地幔热柱成因[J]. 矿物岩石, 2002, 22(4): 27-32. doi: 10.3969/j.issn.1001-6872.2002.04.006
[42] Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous comlex: Implications of the genesis of Fe-Ti oxide deposits and A-type granites of SW China[J]. Earth Planet. Sci. Lett., 2010, 289(3): 509-519. http://www.sciencedirect.com/science/article/pii/S0012821X09007067
[43] Kamenetsky V S, Chuan S L, Kamentsky M B, et al. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources[J]. Journal of Petrology, 2012, 53(10): 2095-2113. doi: 10.1093/petrology/egs045
[44] Lassiter J C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotope constraints[C]//M ahoney J. Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, 1997: 335-355.
[45] Mahoney J J. An isotopic survey of Pacific oceanic plateaus: Implications for their nature and origin[C]//Keating B H, Fryer P, Batiza R, et al. American Geophysical Union Monograph 43, Washington, DC, 1987: 207-220.
[46] Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and age of the Ontong Java Plateau[C]//Pringle M S, Sager W W, Sliter W V, et al. Geophysical Monograph. American Geophysical Union, Washington, 1993, 77: 233-261.
[47] Tejada M L G, Mahoney J J, Castillo P R, et al. Pin-pricking the elephant: Evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts[C]//Fitton J G, Mahoney J J, Wallace P J, et al. Origin and Evolution of the Ontong Java Plateau. Geological Society Special Publication, Geological Society of London, 2004, 229: 133-150.
[48] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth Planet. Sci. Lett., 1991, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6
[49] Hauri E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382: 415-419. doi: 10.1038/382415a0
[50] Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229. doi: 10.1038/385219a0
[51] Lassiter J C, Hauri E H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume[J]. Earth Planet. Sci. Lett., 1998, 164: 483-496. doi: 10.1016/S0012-821X(98)00240-4
[52] Hart S R, Hauri E H, Oschmann L A. Mantle plumes and entrainment: isotope evidence[J]. Science, 1992, 256: 517-520. doi: 10.1126/science.256.5056.517
[53] Lee C T, Luffi P, Hoink T, et al. Upside-down differentiation and generation of a 'primordial' lower mantle[J]. Nature, 2010, 463: 930-935. doi: 10.1038/nature08824
[54] Hanan B B, Graham D W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes[J]. Science, 1996, 272: 991-995. doi: 10.1126/science.272.5264.991
[55] Farley K A, Natland J H, Craig H. Binary mixing of enriched and undegassed (primitive) mantle components (He, Sr, Nd, Pb) in Samoan lavas[J]. Earth Planet. Sci. Lett., 1992, 111: 183-199. http://www.sciencedirect.com/science/article/pii/0012821X9290178X
[56] 杨晓松, 胡家杰. 二元混合体系的端元Sm-Nd模式年龄计算方法[J]. 地质科学, 1993, 28(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199301004.htm
[57] 刘兵, 李小军, 关奇, 等. 滇东南富宁地区基性侵入岩及喷出岩时代[J]. 地质通报, 2018, 37(11): 2021-2031. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181108&flag=1
[58] Ringwood A E. Phase transformations and differentiation in subducted lithosphere; implications for mantle dynanmics, basalt petrogenesis and crustal evolusion[J]. Journal of Geology, 1982, 314: 611-643. http://www.onacademic.com/detail/journal_1000034872571210_342f.html
[59] Zhao G C, Sun M. A palo-mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Review, 2004, 67: 91-123.
[60] Maruyama S, Santosh M. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-73. http://www.sciencedirect.com/science/article/pii/S1342937X06002012
[61] 夏林圻. 超大陆构造、地幔动力学和岩浆-成矿相应[J]. 西北地质, 2013, 46(3): 1-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303001.htm
[62] Santosh M A. Synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment[J]. Journal of Geodynamics, 2010, 50: 11-133. http://www.sciencedirect.com/science/article/pii/S0264370710000700
-