滇东北昭通地区峨眉山玄武岩钕-锶-铅同位素特征——峨眉山地幔柱源区性质与Rodinia超大陆事件的耦合关系

王晓峰, 熊波, 戚戎辉, 刘军平, 关学卿, 吴嘉林. 滇东北昭通地区峨眉山玄武岩钕-锶-铅同位素特征——峨眉山地幔柱源区性质与Rodinia超大陆事件的耦合关系[J]. 地质通报, 2021, 40(7): 1084-1093.
引用本文: 王晓峰, 熊波, 戚戎辉, 刘军平, 关学卿, 吴嘉林. 滇东北昭通地区峨眉山玄武岩钕-锶-铅同位素特征——峨眉山地幔柱源区性质与Rodinia超大陆事件的耦合关系[J]. 地质通报, 2021, 40(7): 1084-1093.
WANG Xiaofeng, XIONG Bo, QI Ronghui, LIU Junping, GUAN Xueqing, WU Jialin. Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent[J]. Geological Bulletin of China, 2021, 40(7): 1084-1093.
Citation: WANG Xiaofeng, XIONG Bo, QI Ronghui, LIU Junping, GUAN Xueqing, WU Jialin. Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent[J]. Geological Bulletin of China, 2021, 40(7): 1084-1093.

滇东北昭通地区峨眉山玄武岩钕-锶-铅同位素特征——峨眉山地幔柱源区性质与Rodinia超大陆事件的耦合关系

  • 基金项目:
    中国地质调查局项目《全国陆域及海区地质图件更新与共享》子项目《云南省系列地质图件数据处理与洋板块地质研究》(编号:DD20190370)、《云南乌蒙山区1∶5万龙树街、塘房、昭通县、鲁甸县4幅区域地质调查》(编号:121201010000150002-02)
详细信息
    作者简介: 王晓峰(1985-), 男, 硕士, 工程师, 从事区域地质调查工作。E-mail: 1045503848@qq.com
    通讯作者: 戚戎辉(1985-), 女, 工程师, 从事区域地质调查工作。E-mail: 196747518@qq.com
  • 中图分类号: P588.14+5;P597

Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent

More Information
  • 滇东北昭通地区峨眉山玄武岩Nd-Sr-Pb同位素的最新研究结果表明,该区玄武岩样品普遍具有1000~900 Ma的亏损地幔Nd模式年龄,其源区可能为来自下地幔类似地幔集中带(FOZO)组分(10%~40%)的地幔橄榄岩和来自古老再循环洋壳的类似EM1组分(60%~90%)不同比例混合而成。样品满足Dupal异常边界条件,暗示峨眉山玄武岩岩浆形成及侵位时与目前所处的纬度有较大差异,二者可能有较大的空间距离。据此,提出新的峨眉山地幔柱形成模式:1000~900 Ma,源于Rodinia超大陆事件中衍生的洋壳发生了俯冲消减作用,洋壳经部分熔融后的固态残留物在660 km地幔过渡带中堆积,形成较冷的难熔"巨石体"。晚二叠世(约260 Ma),这些"巨石体"(很可能是榴辉岩相的超高压变质岩)受重力驱动作用进一步下沉到核幔边界"D"层时,发生钙钛矿→后钙钛矿的矿物相转变,这是一个强烈的放热反应,导致下地幔及俯冲板片堆积体自身的部分熔融,引起深部高温富铁、富钛的熔融体上涌进入地幔,形成地幔柱。这些岩浆大规模的上涌、喷发,形成了扬子陆块西缘规模巨大的峨眉山大火成岩省(LIPs)。此时古地理位置还处于南半球的某个位置,古特提斯大洋关闭后,这些携带南半球特有的地球化学烙印(Dupal异常)的玄武岩随着扬子板块一路向北漂移,到达今天的位置。

  • 加载中
  • 图 1  峨眉山大火成岩省分布图(据参考文献[23]修改)

    Figure 1. 

    图 2  Pb同位素相图

    Figure 2. 

    图 3  Pb同位素混合模拟图(图中代号注释见图 2)

    Figure 3. 

    图 4  峨眉山地幔柱演化模式(据参考文献[60]修改)

    Figure 4. 

    表 1  峨眉山玄武岩Pb同位素分析成果

    Table 1.  Pb isotopic compositions of Emeishan basalts

    样品编号 同位素比值 主要参数
    206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ ω Th/U Δ7/4 Δ8/4
    PM002-8-1 17.606 15.570 37.973 8.38 35.29 4.08 17.05 106.03
    PM002-11-1 17.638 15.590 38.071 8.41 35.69 4.11 18.70 111.97
    PM021-7-1 17.663 15.591 38.067 8.43 35.68 4.09 18.53 108.54
    PM021-8-1 17.636 15.625 38.131 8.41 35.94 4.14 22.23 118.21
    PM021-11-1 17.692 15.649 38.230 8.46 36.35 4.16 24.02 121.34
    PM008-8-1 17.837 15.597 38.315 8.61 36.71 4.13 17.25 112.31
    PM002-12-1 17.687 15.555 38.038 8.46 35.56 4.07 14.67 102.74
    PM008-13-1 17.589 15.605 38.098 8.36 35.81 4.15 20.74 120.59
    PM008-20-1 17.788 15.585 38.167 8.56 36.09 4.08 16.58 103.43
    PM021-27-1 17.678 15.619 38.173 8.45 36.12 4.14 21.17 117.33
    PM021-44-1 17.689 15.606 38.122 8.46 35.90 4.11 19.75 110.90
    PM022-7-1 17.626 15.640 38.225 8.40 36.33 4.19 23.83 128.82
    PM002-19-1 17.895 15.473 38.237 8.67 36.38 4.06 4.22 97.49
    PM022-15-1 17.677 15.606 38.154 8.45 36.04 4.13 19.88 115.55
    PM022-20-1 17.624 15.572 38.016 8.39 35.46 4.09 17.06 108.16
    PM002-26-1 17.690 15.530 38.041 8.46 35.57 4.07 12.14 102.68
    PM008-26-1 17.572 15.557 37.963 8.34 35.24 4.09 16.12 109.15
    PM008-35-1 17.578 15.612 38.113 8.35 35.87 4.16 21.55 123.42
    PM022-23-1 17.657 15.619 38.166 8.43 36.09 4.14 21.40 119.17
    PM002-29-1 17.578 15.530 37.920 8.35 35.07 4.07 13.35 104.12
    PM008-29-1 17.777 15.562 38.143 8.55 35.99 4.07 14.40 102.36
    PM002-56-1 17.602 15.578 38.070 8.37 35.69 4.13 17.89 116.22
    下载: 导出CSV

    表 2  昭通地区峨眉山玄武岩Sr同位素分析成果

    Table 2.  Sr isotopic compositions of Emeishan basalts in the Zhaotong area

    样品编号 同位素比值 主要参数
    87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)0 εSr(t) Rb/Sr ΔSr
    PM002-8-1 0.1396 0.70658 0.706066 26.66 0.05 60.7
    PM002-11-1 0.2836 0.70681 0.705765 22.40 0.10 57.7
    PM021-7-1 0.3718 0.70726 0.705890 24.17 0.13 58.9
    PM021-8-1 0.1542 0.70617 0.705602 20.08 0.05 56.0
    PM021-11-1 0.7069 0.70915 0.706545 33.48 0.25 65.5
    PM008-8-1 0.2033 0.70718 0.706431 31.85 0.07 64.3
    PM002-12-1 0.1689 0.70607 0.705448 17.89 0.06 54.5
    PM008-13-1 0.1985 0.70663 0.705899 24.29 0.07 59.0
    PM008-20-1 0.2215 0.70662 0.705804 22.95 0.08 58.0
    PM021-27-1 0.1547 0.70631 0.705740 22.04 0.05 57.4
    PM021-44-1 0.2007 0.70632 0.705581 19.78 0.07 55.8
    PM022-7-1 0.2200 0.70579 0.704979 11.24 0.08 49.8
    PM002-19-1 0.1521 0.70719 0.706630 34.67 0.05 66.3
    PM022-15-1 0.4582 0.70737 0.705682 21.21 0.16 56.8
    PM022-20-1 0.1815 0.70650 0.705831 23.34 0.06 58.3
    PM002-26-1 0.2064 0.70640 0.705640 20.61 0.07 56.4
    PM008-26-1 0.1201 0.70601 0.705567 19.59 0.04 55.7
    PM008-35-1 0.1745 0.70649 0.705847 23.56 0.06 58.5
    PM022-23-1 0.1852 0.70639 0.705708 21.58 0.06 57.1
    PM002-29-1 0.1783 0.70633 0.705673 21.09 0.06 56.7
    PM008-29-1 0.2182 0.70635 0.705546 19.29 0.08 55.5
    PM002-56-1 0.3480 0.70822 0.706938 39.05 0.12 69.4
    下载: 导出CSV

    表 3  昭通地区峨眉山玄武岩Nd同位素分析成果

    Table 3.  Nd isotopic compositions of Emeishan basalts in the Zhaotong area

    样品编号 同位素比值 主要参数
    147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)0 εNd(t) Sm/Nd tDM/Ma
    PM002-8-1 0.1199 0.512504 0.512301 -0.07 0.20 1049
    PM002-11-1 0.1215 0.512540 0.512334 0.58 0.20 1008
    PM021-7-1 0.1235 0.512538 0.512329 0.47 0.20 1034
    PM021-8-1 0.1217 0.512541 0.512335 0.59 0.20 1009
    PM021-11-1 0.1204 0.512480 0.512276 -0.56 0.20 1094
    PM008-8-1 0.1170 0.512483 0.512285 -0.39 0.19 1051
    PM002-12-1 0.1196 0.512548 0.512345 0.79 0.20 975
    PM008-13-1 0.1268 0.512588 0.512373 1.34 0.21 986
    PM008-20-1 0.1285 0.512614 0.512396 1.79 0.21 959
    PM021-27-1 0.1215 0.512548 0.512342 0.73 0.20 995
    PM021-44-1 0.1253 0.512613 0.512401 1.87 0.21 926
    PM022-7-1 0.1208 0.512567 0.512362 1.13 0.20 957
    PM002-19-1 0.1274 0.512563 0.512347 0.83 0.21 1037
    PM022-15-1 0.1287 0.512614 0.512396 1.78 0.21 961
    PM022-20-1 0.1303 0.512620 0.512399 1.85 0.22 969
    PM002-26-1 0.1284 0.512621 0.512403 1.93 0.21 945
    PM008-26-1 0.1255 0.512633 0.512420 2.26 0.21 894
    PM008-35-1 0.1232 0.512607 0.512398 1.83 0.20 915
    PM022-23-1 0.1310 0.512630 0.512408 2.02 0.22 958
    PM002-29-1 0.1257 0.512627 0.512414 2.13 0.21 906
    PM008-29-1 0.1282 0.512597 0.512380 1.47 0.21 986
    PM002-56-1 0.1276 0.512587 0.512371 1.29 0.21 997
    下载: 导出CSV
  • [1]

    Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0

    [2]

    White R S, Mckenzie D P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Geophys. Res., 1989, 94: 7685-7729.

    [3]

    Hill R I. Starting pIume and continentaI break-up[J]. Earth Planet. Sci. Lett., 1991, 104: 398-416. doi: 10.1016/0012-821X(91)90218-7

    [4]

    Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23(10): 889-892. doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2

    [5]

    Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup[J]. Earth and Planetary Science Letters, 1999, 166(3): 177-195. http://www.researchgate.net/profile/V_Courtillot/publication/222496393_On_causal_links_between_flood_basalts_and_continental_breakup/links/02bfe514738443c7a3000000

    [6]

    张招崇. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 2009, 36(3): 634-646. doi: 10.3969/j.issn.1000-3657.2009.03.010

    [7]

    Wignall P B. Large Igneous Provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33. http://www.sciencedirect.com/science/article/pii/S0012825200000374

    [8]

    何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601003.htm

    [9]

    侯增谦, 卢记仁, 林盛中. 峨眉山地幔柱轴部的榴辉岩-地幔岩源区: 主元素、恒量元素及Sr、Nd、Pb同位素证据[J]. 岩石学报, 2005, 79(2): 200-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502009.htm

    [10]

    张招崇, John J Mahoney, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部分熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606012.htm

    [11]

    夏林圻, 徐学义, 李向民, 等. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质, 2012, 45(2): 1-26. doi: 10.3969/j.issn.1009-6248.2012.02.001

    [12]

    李宏博, 张招崇, 李永生, 等. 峨眉山地幔柱轴部位置的讨论[J]. 地质评论, 2013, 59(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302002.htm

    [13]

    姜寒冰. 峨眉山高钛和低钛玄武岩的岩石成因[D]. 长安大学硕士学位论文, 2006.

    [14]

    朱炳泉. 全球幔源岩Pb-Sr-Nd同位素体系[J]. 地学前缘, 2007, 14(2): 24-36. doi: 10.3321/j.issn:1005-2321.2007.02.003

    [15]

    周德进, 沈丽璞, 张旗, 等. 滇西古特提斯构造带玄武岩的Dupar异常[J]. 地球物理学进展, 1995, 10(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ502.003.htm

    [16]

    刘成英. 峨眉山玄武岩的古地磁研究[D]. 中国科学院大学博士学位论文, 2012.

    [17]

    Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth and Planetary Science Letters, 2002, 198(3): 449-458. http://www.sciencedirect.com/science/article/pii/S0012821X02005356

    [18]

    赖旭龙, 孙亚东, 江海水. 峨眉山大火成岩省火山活动与中晚二叠世之交生物大灭绝[J]. 中国科学基金, 2009, (6): 353-356. doi: 10.3969/j.issn.1000-8217.2009.06.007

    [19]

    朱江, 张招崇, 侯通, 等. 贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄: 对峨眉山大火成岩省与生物大规模灭绝关系的约束[J]. 岩石学报, 2011, 27(9): 2743-2751. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109023.htm

    [20]

    朱江, 张招崇. 大火成岩省与二叠纪两次生物灭绝关系研究进展[J]. 地质论评, 2013, 59(1): 137-148. doi: 10.3969/j.issn.0371-5736.2013.01.015

    [21]

    Ali J R, Thompson G M, Zhou M F, et al. Emeishan Large Igneous Province, SW China[J]. Lithos, 2005, 79(3/4): 475-489. http://www.sciencedirect.com/science/article/pii/S0024493704003196

    [22]

    Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan Large Igneous Province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113(3/4): 369-392. http://www.sciencedirect.com/science/article/pii/S0024493709001650

    [23]

    Ren Z Y, Wu Y D, Le Zhang, et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochimica et Cosmochimica Acta, 2017, 208: 63-85. doi: 10.1016/j.gca.2017.01.054

    [24]

    Ernst R E, Buchan K L, Campbell Ian H. Frontiers in Large Igneous Province research[J]. Lithos, 2005, 79(3/4): 271-297. http://www.sciencedirect.com/science/article/pii/S0024493704003093

    [25]

    Bryan S E, Ernst R E. Revised definition of Large Igneous Province research (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/4): 175-201. http://www.sciencedirect.com/science/article/pii/S0012825207001201

    [26]

    Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Bingchuan section: Implications for the termination age of Emeishan Large Igneous Province[J]. Lithos, 2014, 204(3): 14-19. http://www.sciencedirect.com/science/article/pii/S0024493714000863

    [27]

    徐义刚, 钟孙霖. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地质化学, 2001, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101001.htm

    [28]

    徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4): 341-353. doi: 10.3321/j.issn:1005-2321.2002.04.014

    [29]

    Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contrib Mineral Petrol., 2006, 151: 1-19. doi: 10.1007/s00410-005-0030-y

    [30]

    Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantel[J]. Nature, 1984, 309: 753-757 doi: 10.1038/309753a0

    [31]

    邢光福. Dupal同位素异常的概念、成因及其地质意义[J]. 火山地质与矿产, 1997, 18(4): 281-291. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199704003.htm

    [32]

    Dupre B, Allegre C J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomema[J]. Nature, 1983, 303: 142-149. doi: 10.1038/303142a0

    [33]

    Xu Y, Chung S, Jahn B, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southern China[J]. Lithos, 2001, 58: 145-168. doi: 10.1016/S0024-4937(01)00055-X

    [34]

    张招崇, 王福生. 峨眉山玄武岩Sr-Nd-Pb同位素特征及其物源[J]. 地球科学, 2003, 28(4): 431-439. doi: 10.3321/j.issn:1000-2383.2003.04.012

    [35]

    Peng Z, Mahoney J J. Drilling lavas from the northwestern Deccan traps, and the evolution of Reunion hotspot mantle[J]. Earth Planet. Sci. Lett., 1995, 134: 169-185. doi: 10.1016/0012-821X(95)00110-X

    [36]

    Sharma M A, Basu R, Nesternko G V. Temporal Sr-Nd-and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics[J]. Earth Planet. Sci. Lett., 1992, 113: 365-381. doi: 10.1016/0012-821X(92)90139-M

    [37]

    De Paolo D J. Inferences about magma sources and mantle structures using variations of 143Nd/144Nd[J]. Geophys Res Lett.. 1976, 3: 743-746. doi: 10.1029/GL003i012p00743

    [38]

    Mc Culloch M T, Wasserbug G J. Sm-Nd and Rb-Sr chronslogy of continental crust formation[J]. Science, 1978, 200: 1003-1011. doi: 10.1126/science.200.4345.1003

    [39]

    沈渭洲, 朱金初. 从Nd模式年龄谈华南地壳的形成时间[J]. 南京大学学报(地球科学版), 1990, 3: 82-92.

    [40]

    李献华, 赵振华. 华南前寒武纪地壳形成的Sm-Nd和U-Pb同位素制约[J]. 地球化学, 1991, 6: 353-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103006.htm

    [41]

    宋谢炎, 侯增谦, 汪云亮, 等. 峨眉山玄武岩的地幔热柱成因[J]. 矿物岩石, 2002, 22(4): 27-32. doi: 10.3969/j.issn.1001-6872.2002.04.006

    [42]

    Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous comlex: Implications of the genesis of Fe-Ti oxide deposits and A-type granites of SW China[J]. Earth Planet. Sci. Lett., 2010, 289(3): 509-519. http://www.sciencedirect.com/science/article/pii/S0012821X09007067

    [43]

    Kamenetsky V S, Chuan S L, Kamentsky M B, et al. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources[J]. Journal of Petrology, 2012, 53(10): 2095-2113. doi: 10.1093/petrology/egs045

    [44]

    Lassiter J C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotope constraints[C]//M ahoney J. Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, 1997: 335-355.

    [45]

    Mahoney J J. An isotopic survey of Pacific oceanic plateaus: Implications for their nature and origin[C]//Keating B H, Fryer P, Batiza R, et al. American Geophysical Union Monograph 43, Washington, DC, 1987: 207-220.

    [46]

    Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and age of the Ontong Java Plateau[C]//Pringle M S, Sager W W, Sliter W V, et al. Geophysical Monograph. American Geophysical Union, Washington, 1993, 77: 233-261.

    [47]

    Tejada M L G, Mahoney J J, Castillo P R, et al. Pin-pricking the elephant: Evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts[C]//Fitton J G, Mahoney J J, Wallace P J, et al. Origin and Evolution of the Ontong Java Plateau. Geological Society Special Publication, Geological Society of London, 2004, 229: 133-150.

    [48]

    Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth Planet. Sci. Lett., 1991, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6

    [49]

    Hauri E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382: 415-419. doi: 10.1038/382415a0

    [50]

    Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229. doi: 10.1038/385219a0

    [51]

    Lassiter J C, Hauri E H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume[J]. Earth Planet. Sci. Lett., 1998, 164: 483-496. doi: 10.1016/S0012-821X(98)00240-4

    [52]

    Hart S R, Hauri E H, Oschmann L A. Mantle plumes and entrainment: isotope evidence[J]. Science, 1992, 256: 517-520. doi: 10.1126/science.256.5056.517

    [53]

    Lee C T, Luffi P, Hoink T, et al. Upside-down differentiation and generation of a 'primordial' lower mantle[J]. Nature, 2010, 463: 930-935. doi: 10.1038/nature08824

    [54]

    Hanan B B, Graham D W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes[J]. Science, 1996, 272: 991-995. doi: 10.1126/science.272.5264.991

    [55]

    Farley K A, Natland J H, Craig H. Binary mixing of enriched and undegassed (primitive) mantle components (He, Sr, Nd, Pb) in Samoan lavas[J]. Earth Planet. Sci. Lett., 1992, 111: 183-199. http://www.sciencedirect.com/science/article/pii/0012821X9290178X

    [56]

    杨晓松, 胡家杰. 二元混合体系的端元Sm-Nd模式年龄计算方法[J]. 地质科学, 1993, 28(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199301004.htm

    [57]

    刘兵, 李小军, 关奇, 等. 滇东南富宁地区基性侵入岩及喷出岩时代[J]. 地质通报, 2018, 37(11): 2021-2031. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181108&flag=1

    [58]

    Ringwood A E. Phase transformations and differentiation in subducted lithosphere; implications for mantle dynanmics, basalt petrogenesis and crustal evolusion[J]. Journal of Geology, 1982, 314: 611-643. http://www.onacademic.com/detail/journal_1000034872571210_342f.html

    [59]

    Zhao G C, Sun M. A palo-mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Review, 2004, 67: 91-123.

    [60]

    Maruyama S, Santosh M. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-73. http://www.sciencedirect.com/science/article/pii/S1342937X06002012

    [61]

    夏林圻. 超大陆构造、地幔动力学和岩浆-成矿相应[J]. 西北地质, 2013, 46(3): 1-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303001.htm

    [62]

    Santosh M A. Synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment[J]. Journal of Geodynamics, 2010, 50: 11-133. http://www.sciencedirect.com/science/article/pii/S0264370710000700

  • 加载中

(4)

(3)

计量
  • 文章访问数:  967
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2019-07-11
修回日期:  2020-04-16
刊出日期:  2021-07-15

目录