Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments
-
摘要:
掌握天然气水合物储层基础物性演化特征对提升天然气水合物资源勘查与试采综合实力具有重要意义。目前,天然气水合物储层基础物性模拟实验和测试仍然以人工制备的天然气水合物岩心样品为主,导致测试结果和模拟实验认识与天然气水合物资源勘查试采工程需求仍有一定的差距,亟需原位准原位物性测试数据进行对比校正。天然气水合物储层保压取心及其后续岩心保压转移与测试是积累准原位物性测试数据的有力手段。聚焦天然气水合物储层保压取心之后的岩心保压转移与测试,全面综述了国内外现有的天然气水合物储层岩心保压转移与测试系统的优缺点,深入分析了天然气水合物储层岩心保压转移与测试获得的基础性认识;综述国内天然气水合物储层保压取心系统研发现状,梳理与之配套的岩心保压转移与测试系统研发现状及其面临的挑战;针对面临的挑战,为发展中国海域天然气水合物储层保压转移与测试技术装备研发自主能力提出了建议。
Abstract:It is of great significance to understand the evolution characteristics of basic physical properties of gas hydrate reservoir to promote the exploration and test production of gas hydrate resources. Currently, the simulation experiment and test of physical property of hydrate-bearing sediments is still given priority to artificial preparation of natural gas hydrate core samples, which results a certain gap between the test results and the understanding of the simulation experiment and the requirements of the testing production engineering of natural gas hydrate resources. As physical property testing data highly need to be compared and corrected in situ in the field, pressure coring, pressure core transfer and testing techniques of hydrate-bearing sediments is an effective means for the acquisition and accumulation of physical testing data.Based on the introduction of the pressure coring, pressure transfer and testing methods, its advantages and disadvantages at home and abroad are comprehensively summarized, and the basic understanding of the core transfer and testing of hydrate-bearing sediments is deeply analyzed. According to the research and development status of pressure core transfer and testing system of offshore hydrate-bearing sediments in China, the challenges in this field are summarized.Finally, in view of the challenges, suggestions are put forward for the independent research and development capability of pressure core transfer and testing technology of offshore hydrate-bearing sediments and its related equipment in China.
-
图 2 PCATS三轴剪切装置结构示意图[26]
Figure 2.
图 7 印度KG盆地天然气水合物岩心直接剪切结果[48]
Figure 7.
图 8 印度KG盆地天然气水合物岩心共振柱试验结果[47]
Figure 8.
图 9 印度KG盆地天然气水合物储层岩心初始渗透率[68]
Figure 9.
图 10 印度KG盆地天然气水合物储层岩心重塑样(含四氢呋喃水合物)土水特征曲线[69]
Figure 10.
图 11 重力活塞式天然气水合物储层保真取心器[81]
Figure 11.
图 12 天然气水合物储层深水深孔保温保压取心器[87]
Figure 12.
-
[1] Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003
[2] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
[3] 梁金强, 吴能友, 杨木壮, 等. 天然气水合物资源量估算方法及应用[J]. 地质通报, 2006, 25(9/10): 1205-1210. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200609222&flag=1
[4] Boswell R. Is Gas Hydrate Energy Within Reach?[J]. Science, 2009, 325(5943): 957-958. doi: 10.1126/science.1175074
[5] 张伟, 梁金强, 苏丕波, 等. 双似海底反射层与天然气水合物成藏关系研究进展与展望[J]. 中国地质, 2020, 47(1): 29-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001004.htm
[6] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705001.htm
[7] Liu L, Lu X, Zhang X, et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization[J]. Advances in Geo-Energy Research, 2017, 1(3): 135-147. doi: 10.26804/ager.2017.03.01
[8] Li Y, Liu C, Liu L, et al. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment[J]. Advances in Geo-Energy Research, 2018, 2(1): 43-52. doi: 10.26804/ager.2018.01.04
[9] 魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201601001.htm
[10] 李晶, 贺行良, 刘昌岭, 等. 海底多组分水合物分解气好氧氧化实验研究[J]. 海洋地质与第四纪地质, 2017, 37(5): 204-216. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705022.htm
[11] 刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705002.htm
[12] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705016.htm
[13] Li Y, Hu G, Wu N, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea[J]. J. Acta Oceanologica Sinica, 2019, 38(3): 114-123. doi: 10.1007/s13131-019-1404-8
[14] Taleb F, Garziglia S, Sultan N. Hydromechanical Properties of Gas Hydrate-Bearing Fine Sediments From In Situ Testing[J]. Journal of Geophysical Research Solid Earth, 2018, 123(11): 9615-9634. doi: 10.1029/2018JB015824
[15] Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B7): B07102. http://onlinelibrary.wiley.com/doi/10.1029/2007JB005351/full
[16] 王韧, 张凌, 孙慧翠, 等. 海洋天然气水合物岩心处理关键技术进展[J]. 地质科技情报, 2017, 36(2): 249-257. doi: 10.3969/j.issn.1009-6248.2017.02.026
[17] 张凌, 蒋国盛, 宁伏龙, 等. 天然气水合物保真取心装置内部密封技术分析[J]. 现代地质, 2009, 23(6): 1147-1152. doi: 10.3969/j.issn.1000-8527.2009.06.021
[18] Abid K, Spagnoli G, Teodoriu C, et al. Review of pressure coring systems for offshore gas hydrates research[J]. Underwater Technology, 2015, 33(1): 19-30. doi: 10.3723/ut.33.019
[19] Dai S, Boswell R, Waite W F, et al. What has been learned from pressure cores[C]//9th International Conference on Gas Hydrate, Denver, Colorado, USA, June 25-30, 2017.
[20] Schultheiss P, Holland M, Roberts J, et al. Advances in wireline pressure coring, coring handling, and core analysis related to gas hydrate drilling investigations[C]//9th International Conference on Gas Hydrate, Denver, Colorado, USA, June 25-30, 2017.
[21] 董刚, 龚建明, 苏新. 海洋天然气水合物钻探取心工艺[J]. 海洋地质前沿, 2011, 27(3): 48-51, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201103008.htm
[22] Yun T, Narsilio G, Santamarina J, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure[J]. Marine Geology, 2006, 229(3): 285-293. http://www.sciencedirect.com/science/article/pii/S0025322706000880
[23] Lee J Y, Schultheiss P J, Druce M, et al. Pressure core sub sampling for GH production tests at in situ effective stress[J]. Fire in the Ice Newsletter, 2009, 9(4): 16-17. http://www.researchgate.net/publication/281040760_Pressure_core_sub_sampling_for_GH_production_tests_at_in_situ_effective_stress
[24] Yoneda J, Masui A, Konno Y, et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 471-486. http://www.sciencedirect.com/science/article/pii/S0264817215000616
[25] Yoneda J, Oshima M, Kida M, et al. Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India's National Gas Hydrate Program Expedition(NGHP) 02[J]. Marine and Petroleum Geology, 2019, 108: 482-501. doi: 10.1016/j.marpetgeo.2018.09.005
[26] Schultheiss P, Holland M, Roberts J, et al. PCATS: Pressure core analysis and transfer system[C]//7th International Conference on Gas Hydrates, Edinburgh, UK, 2011.
[27] Schultheiss P, Aumann J T, Humphrey G D. Pressure coring and pressure core analysis developments for the upcoming Gulf of Mexico Joint Industry Project coring expedition[C]//Offshore Technology Conference, Houston, Texas, USA, 2010.
[28] Schultheiss P J, Francis T J G, Holland M, et al. Pressure coring, logging and subsampling with the HYACINTH system[J]. New Techniques in Sediment Core Analysis, 2006, 267: 151-163. http://adsabs.harvard.edu/abs/2006GSLSP.267..151S
[29] Priest J A, Druce M, Roberts J, et al. PCATS Triaxial: A new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 460-470. http://www.sciencedirect.com/science/article/pii/S0264817214003730
[30] Santamarina J C, Dai S, Jang J, et al. Pressure Core Characterization Tools for Hydrate-Bearing Sediments[J]. Scientific Drilling, 2012, 14(6): 44-48. http://www.oalib.com/paper/2701038
[31] Nagao J, Yoneda J, Konno Y, et al. Development of the Pressure-core Nondestructive Analysis Tools(PNATs) for Methane Hydrate Sedimentary Cores[C]//EGU General Assembly Conference Abstracts, 2015.
[32] Yoneda J, Masui A, Konno Y, et al. Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 451-459. http://www.sciencedirect.com/science/article/pii/S0264817215000604
[33] Jin Y, Konno Y, Nagao J. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography[J]. Review of Scientific Instruments, 2014, 85(9): 094502. doi: 10.1063/1.4896354
[34] Yoneda J, Masui A, Tenma N, et al. Triaxial testing system for pressure core analysis using image processing technique[J]. Review of Scientific Instruments, 2013, 84(11): 114503. doi: 10.1063/1.4831799
[35] Wang D, Li Y, Liu C, et al. Study of hydrate occupancy, morphology and microstructure evolution with hydrate dissociation in sediment matrices using X-ray micro-CT[J]. Marine and Petroleum Geology, 2020, 113: 104138. doi: 10.1016/j.marpetgeo.2019.104138
[36] Li C, Liu C, Hu G, et al. Investigation on the Multiparameter of Hydrate-Bearing Sands Using Nano-Focus X-Ray Computed Tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 2286-2296. doi: 10.1029/2018JB015849
[37] Ta X H, Yun T S, Muhunthan B, et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 912-924. doi: 10.1002/2014GC005675
[38] Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811
[39] Liu C, Meng Q, He X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61(Supplement C): 14-21. http://www.sciencedirect.com/science/article/pii/S0264817214003687
[40] 刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704008.htm
[41] Holland M E, Schultheiss P J, Roberts J A. Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 407-423. doi: 10.1016/j.marpetgeo.2018.07.018
[42] Yun T S, Fratta D, Santamarina J C. Hydrate-Bearing Sediments from the Krishna Godavari Basin: Physical Characterization, Pressure Core Testing, and Scaled Production Monitoring[J]. Energy & Fuels, 2010, 24(11): 5972-5983. http://pubs.acs.org/doi/10.1021/ef100821t
[43] Rees E V L, Priest J A, Clayton C. The structure of methane gas hydrate bearing sediments from the Krishna-Godavari Basin as seen from Micro-CT scanning[J]. Marine and Petroleum Geology, 2011, 28(7): 1283-1293. doi: 10.1016/j.marpetgeo.2011.03.015
[44] Cook A E, Anderson B I, Malinverno A, et al. Electrical anisotropy due to gas hydrate-filled fractures[J]. Geophysics, 2010, 75(6): F173-F185. doi: 10.1190/1.3506530
[45] Yun T S, Lee C, Lee J S, et al. A pressure core based characterization of hydrate-bearing sediments in the Ulleung Basin, Sea of Japan(East Sea)[J]. Journal of Geophysical Research: Solid Earth, 2011, 116: B02204. http://onlinelibrary.wiley.com/doi/10.1029/2010JB007468/full
[46] Santamarina J C, Dai S, Terzariol M, et al. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 434-450. http://www.sciencedirect.com/science/article/pii/S0264817215000653
[47] Priest J A, Hayley J L, Smith W E, et al. PCATS triaxial testing: Geomechanical properties of sediments from pressure cores recovered from the Bay of Bengal during expedition NGHP-02[J]. Marine and Petroleum Geology, 2019, 108: 424-438. doi: 10.1016/j.marpetgeo.2018.07.005
[48] Jang J, Dai S, Yoneda J, et al. Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 537-550. doi: 10.1016/j.marpetgeo.2018.08.015
[49] Lee J Y, Santamarina J C, Ruppel C. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates[J]. Marine and Petroleum Geology, 2008, 25(9): 884-895. doi: 10.1016/j.marpetgeo.2008.01.019
[50] Kim H-S, Cho G-C, Lee J Y, et al. Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the second Ulleung Basin Gas Hydrate expedition, East Sea, Korea[J]. Marine and Petroleum Geology, 2013, 47(Supplement C): 56-65.
[51] Hu G, Ye Y, Zhang J, et al. Acoustic response of gas hydrate formation in sediments from South China Sea[J]. Marine and Petroleum Geology, 2014, 52: 1-8. doi: 10.1016/j.marpetgeo.2014.01.007
[52] Bu Q, Hu G, Ye Y, et al. The elastic wave velocity response of methane gas hydarte formation in vertical gas migration systems[J]. Journal of Geophysics and Engineering, 2017, 14(3): 555-569. doi: 10.1088/1742-2140/aa6493
[53] Lee J Y, Francisca F M, Santamarina J C, et al. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11): B11105. doi: 10.1029/2009JB006670
[54] Suzuki K, Schultheiss P, Nakatsuka Y, et al. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 346-357. http://www.sciencedirect.com/science/article/pii/S0264817215000574
[55] Priest J A, Best A I, Clayton C R I. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B4): B04102.
[56] Priest J A, Rees E V L, Clayton C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): B11205. http://adsabs.harvard.edu/abs/2009JGRB..11411205P
[57] Clayton C, Priest J, Best A. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand[J]. Geotechnique, 2005, 55(6): 423-434. doi: 10.1680/geot.2005.55.6.423
[58] Zhang Z, Li C, Ning F, et al. Pore fractal characteristics of hydrate-bearing sands and implications to the saturated water permeability[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018721. http://onlinelibrary.wiley.com/doi/10.1029/2019JB018721
[59] 刘乐乐, 张宏源, 刘昌岭, 等. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705017.htm
[60] 张宏源, 刘乐乐, 刘昌岭, 等. 基于瞬态压力脉冲法的含水合物沉积物渗透性实验研究[J]. 实验力学, 2018, 33(2): 263-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802012.htm
[61] Li G, Wu D M, Li X S, et al. Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands[J]. Applied Energy, 2017, 202: 282-292. doi: 10.1016/j.apenergy.2017.05.147
[62] Delli M L, Grozic J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2014, 120: 1-9. doi: 10.1016/j.petrol.2014.05.011
[63] Fujii T, Suzuki K, Takayama T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310-322. doi: 10.1016/j.marpetgeo.2015.02.037
[64] Konno Y, Yoneda J, Egawa K, et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(Part 2): 487-495. http://www.sciencedirect.com/science/article/pii/S0264817215000525
[65] Kleinberg R L, Flaum C, Straley C, et al. Seafloor nuclear magnetic resonance assay of methane hydrate in sediment and rock[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B3): 2137. http://ci.nii.ac.jp/naid/80016227637
[66] Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B10): 2508. http://adsabs.harvard.edu/abs/2003JGRB..108.2508K
[67] Daigle H, Thomas B, Rowe H, et al. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333[J]. Jounarl of Geophysical Research Solid Earth, 2014, 119(4): 2631-2650. doi: 10.1002/2013JB010784
[68] Yoneda J, Oshima M, Kida M, et al. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 524-536. doi: 10.1016/j.marpetgeo.2018.07.006
[69] Dai S, Kim J, Xu Y, et al. Permeability anisotropy and relative permeability in sediments from the National Gas Hydrate Program Expedition 02, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 705-713. doi: 10.1016/j.marpetgeo.2018.08.016
[70] Cao S C, Jang J, Jung J, et al. 2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments[J]. Marine and Petroleum Geology, 2019, 108: 714-730. doi: 10.1016/j.marpetgeo.2018.09.010
[71] Jang J, Waite W F, Stern L A, et al. Physical property characteristics of gas hydrate-bearing reservoir and associated seal sediments collected during NGHP-02 in the Krishna-Godavari Basin, in the offshore of India[J]. Marine and Petroleum Geology, 2019, 108: 249-271. doi: 10.1016/j.marpetgeo.2018.09.027
[72] Kim J, Dai S, Jang J, et al. Compressibility and particle crushing of Krishna-Godavari Basin sediments from offshore India: Implications for gas production from deep-water gas hydrate deposits[J]. Marine and Petroleum Geology, 2019, 108: 697-704. doi: 10.1016/j.marpetgeo.2018.07.012
[73] Mahabadi N, Zheng X L, Jang J. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments[J]. Geophysical Research Letters, 2016, 43(9): 4279-4287. doi: 10.1002/2016GL068656
[74] Mahabadi N, Dai S, Seol Y, et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3099-3110. doi: 10.1002/2016GC006372
[75] Mahabadi N, Jang J. Relative water and gas permeability for gas production from hydrate-bearing sediments[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6): 2346-2353. doi: 10.1002/2014GC005331
[76] Liu L, Dai S, Ning F, et al. Fractal characteristics of unsaturated sands-implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 11-17. doi: 10.1016/j.jngse.2019.03.019
[77] 刘协鲁, 赵义, 刘海龙, 等. 海洋天然气水合物保温保压取样工具对比研究[J]. 地质装备, 2018, 19(1): 11-15. doi: 10.3969/j.issn.1009-282X.2018.01.003
[78] 赵尔信, 蔡家品, 贾美玲, 等. 我国海洋钻探技术[J]. 探矿工程(岩土钻掘工程), 2014, 41(9): 43-48, 70. doi: 10.3969/j.issn.1672-7428.2014.09.009
[79] 许俊良, 薄万顺, 朱杰然. 天然气水合物钻探取心关键技术研究进展[J]. 石油钻探技术, 2008, 36(5): 32-36. doi: 10.3969/j.issn.1001-0890.2008.05.008
[80] 李世伦, 程毅, 秦华伟, 等. 重力活塞式天然气水合物保真取样器的研制[J]. 浙江大学学报(工学版), 2006, 40(5): 888-892. doi: 10.3785/j.issn.1008-973X.2006.05.033
[81] Chen J, Fan W, Bingham B, et al. A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method[J]. Energies, 2013, 6: 3353-3372. doi: 10.3390/en6073353
[82] Chen J, Gao Q, Liu H, et al. Development of a Pressure-Retained Transfer System of Seafloor Natural Gas Hydrate[J]. Environmental Geotechnics, 2019, 10: 1-10.
[83] Ren Z, Chen J, He J, et al. Research and analysis of 30-m gravity piston corer for natural gas hydrate[J]. Marine Technology Society Journal, 2020, 54(2): 57-68. doi: 10.4031/MTSJ.54.2.5
[84] Ren Z, Chen J, Gao Q, et al. The research on a driving device for natural gas hydrate pressure core[J]. Energies, 2020, 13: 221. doi: 10.3390/en13010221
[85] Zhang P, Chen J, Gao Q, et al. Research on a temperature control device for seawater hydraulic systems based on a natural gas hydrate core sample pressure-retaining and transfer device[J]. Energies, 2019, 12: 3990. doi: 10.3390/en12203990
[86] Gao Q, Chen J, Liu J, et al. Research on pressure-stabilizing system for transfer device for natural gas hydrate cores[J]. Energy Science and Engineering, 2019, 8: 973-985. http://www.ingentaconnect.com/content/bpl/ese3/2020/00000008/00000004/art00005
[87] 王智锋, 管志川, 许俊良. 天然气水合物深水深孔钻探取心系统研制[J]. 天然气工业, 2012, 32(5): 46-48. doi: 10.3787/j.issn.1000-0976.2012.05.012
[88] 肖波, 盛堰, 刘方兰. 天然气水合物样品保压转移及处理技术系统设计[J]. 海洋地质前沿, 2013, 29(10): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201310010.htm
[89] 温明明, 刘俊波, 耿雪樵, 等. 天然气水合物样品转移装置卡爪机构设计[J]. 江苏船舶, 2016, 33(1): 32-34. doi: 10.3969/j.issn.1001-5388.2016.01.010
[90] 陈家旺, 张永雷, 孙瑜霞, 等. 天然气水合物保压转移装置的压力维持系统[J]. 海洋技术学报, 2017, 36(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201702004.htm
[91] 耿雪樵, 孙瑜霞, 张永雷, 等. 天然气水合物保压转移的压力特性[J]. 中国资源综合利用, 2017, 35(4): 123-125. doi: 10.3969/j.issn.1008-9500.2017.04.046
[92] 裴学良, 任红, 吴仲华, 等. 天然气水合物岩心带压转移装置研制与现场试验[J]. 石油钻探技术, 2018, 46(3): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201803013.htm