基于便携式X射线荧光光谱法的深海沉积物现场成分快速检测及适用性评估

黄威, 胡邦琦, 徐磊, 廖时理, 路晶芳, 宋维宇, 丁雪, 虞义勇, 郭建卫. 基于便携式X射线荧光光谱法的深海沉积物现场成分快速检测及适用性评估[J]. 地质通报, 2021, 40(2-3): 423-433.
引用本文: 黄威, 胡邦琦, 徐磊, 廖时理, 路晶芳, 宋维宇, 丁雪, 虞义勇, 郭建卫. 基于便携式X射线荧光光谱法的深海沉积物现场成分快速检测及适用性评估[J]. 地质通报, 2021, 40(2-3): 423-433.
HUANG Wei, HU Bangqi, XU Lei, LIAO Shili, LU Jingfang, SONG Weiyu, DING Xue, YU Yiyong, GUO Jianwei. Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment[J]. Geological Bulletin of China, 2021, 40(2-3): 423-433.
Citation: HUANG Wei, HU Bangqi, XU Lei, LIAO Shili, LU Jingfang, SONG Weiyu, DING Xue, YU Yiyong, GUO Jianwei. Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment[J]. Geological Bulletin of China, 2021, 40(2-3): 423-433.

基于便携式X射线荧光光谱法的深海沉积物现场成分快速检测及适用性评估

  • 基金项目:
    青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室自主课题《帕劳海脊两侧海盆锰结核的铂族元素和铼锇同位素记录的海脊形成演化事件》(编号:MMRZZ201808)、国家自然科学基金项目《菲律宾海盆底层水体性质对中更新世气候转型的响应机制》(批准号:41976192)、中国地质调查局项目(编号:DD20191010、DD20190578)、大洋"十三五"资源环境类课题《硫化物合同区热液硫化物成矿作用与成矿规律》(编号:DY135-S1-1-02)
详细信息
    作者简介: 黄威(1981-), 男, 硕士, 高级工程师, 从事海底成矿作用与物质循环研究。E-mail: huangw@mail.cgs.gov.cn
    通讯作者: 徐磊(1982-), 男, 硕士, 高级工程师, 从事海洋地球化学测试及环境影响评价研究。E-mail: xulei2014107@163.com
  • 中图分类号: P736.21;P736.12

Rapid in-situ assaying of deep-sea sediments by portable X-ray fluorescence spectrometry and its applicability assessment

More Information
  • 远洋粘土、硅藻软泥、铁锰结核及结壳是常见的深海沉积成因物质类型,在开展深海地质调查工作时及时获得这些物质的成分信息,对于提升海上地质调查效率和认知能力十分重要。通过便携式X射线荧光光谱法(pXRF)对菲律宾海深水区域60个样品进行分析,并结合实验室测试结果,评估pXRF能测出的24种元素含量数据的稳定性、准确性及相关性,探讨pXRF在海上地质调查工作中对于深海沉积物现场成分快速检测的适用性。通过综合对比研究发现,Ca、Cu、Fe、K、P、Pb、Sr、Zn、Zr九种元素稳定性、准确性和相关性较好,可以直接用于定性乃至定量研究工作。Al、Ba、Mn、Mo、Ni、Rb、Si、Ti、Th、V十种元素的三项指标参数等级略低,可用于含量高低判定和趋势分析等定性研究工作。Bi、Cs、Mg、Sb、Sc五种元素的测试效果较差,本法不建议使用。取样量充足且分布均匀、湿样烘干至恒量后研磨过筛、封装时充分压实平整、测试时间增长、选择合适的标准物质校正和检验、重点和异常样品增加测试次数等措施的执行有利于获得高精度的pXRF海上测试数据。未来对更多类型和数量深海样品开展pXRF现场分析,将有利于建立更精准的测试方法流程,达到现场快速揭示样品成分特征、确定底质类型及圈定矿化异常等目的,为海上关键决策的部署和实施提供参考和借鉴。

  • 加载中
  • 图 1  各类型样品不同元素离散系数分布特征

    Figure 1. 

    图 2  各类型样品不同元素相对误差分布特征

    Figure 2. 

    图 3  相关系数高于0.99的元素

    Figure 3. 

    图 4  相关系数为0.90~0.99的元素

    Figure 4. 

    图 5  相关系数低于0.90的元素

    Figure 5. 

    图 6  四类深海沉积成因样品pXRF和实验室Ti元素含量测试数据的相关关系

    Figure 6. 

    表 1  pXRF元素含量海上现场测试等级划分及依据

    Table 1.  Grade classifications of the assay techniques of deep-sea sediments by pXRF and its standards

    指标\等级 1级 2级 3级 4级
    稳定性及分级依据 Ca、Fe、K、Si、Sr、Ti Al、Ba、Cs、Cu、P、Pb、Zn、Zr Mn、Mo、Ni、Rb、Th、V Bi、Mg、Sb、Sc
    离散系数低于5%的元素 除1级外离散系数低于10%的元素 除1、2级外离散系数低于20%的元素 除1~3级外的元素
    准确性及分级依据 Fe、Zn Ca、Cu、K、Mg、Mn、P、Pb、Sr、V、Zr Al、Ba、Mo、Ni、Rb、Si、Th、Ti Bi、Cs、Sb、Sc
    相对误差低于20%的元素 除1级外相对误差低于40%的元素 除1、2级外相对误差低于60%的元素 除1~3级外的元素
    相关性及分级依据 Ca、Cu、Fe、Mn、Ni、Sr、V、Zn、Zr Al、Ba、K、Mo、P、Pb、Rb、Si、Th、Ti Bi、Mg Cs、Sb、Sc
    相关系数高于0.99的元素 除1级外相关系数高于0.90的元素 除1、2级外相关系数高于0.50的元素 除1~3级外的元素
    下载: 导出CSV
  • [1]

    拓守廷, 翦知湣. 科学大洋钻探船的回顾与展望[J]. 工程研究——跨学科视野中的工程, 2016, 8(2): 155-161. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKG201602004.htm

    [2]

    Ryan J G, Shervais J W, Li Y, et al. Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352[J]. Chemical Geology, 2017, 451: 55-66. doi: 10.1016/j.chemgeo.2017.01.007

    [3]

    Reagan M K, Pearce J A, Petronotis K, et al. Expedition 352 methods[J]. Proceedings of the International Ocean Discovery Program, 2015, 352: 1-45. http://www.researchgate.net/publication/300461216_jin_50_nianlaizhongguoganhanhuatezhengfenxi

    [4]

    Lemière B. A review of pXRF(field portable X-ray fluorescence)applications for applied geochemistry[J]. Journal of Geochemical Exploration, 2018, 188: 350-363. doi: 10.1016/j.gexplo.2018.02.006

    [5]

    周曙光, 廖世斌, 周可法, 等. 便携式X射线荧光光谱仪在岩石样品分析中的应用研究[J]. 岩矿测试, 2018, 37(1): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201801009.htm

    [6]

    邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503025.htm

    [7]

    Weindorf D C, Chakraborty S, Li B, et al. Compost salinity assessment via portable X-ray fluorescence(PXRF)spectrometry[J]. Waste Management, 2018, 78: 158-163. doi: 10.1016/j.wasman.2018.05.044

    [8]

    Dutkiewicz A, O'Callaghan S, Müller R D. Controls on the distribution of deep-sea sediments[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3075-3098. doi: 10.1002/2016GC006428

    [9]

    Li Y H, Schoonmaker J E. Chemical Composition and Mineralogy of Marine Sediments A2-Holland, Heinrich D[C]//Turekian K K. Treatise on Geochemistry(Second Edition), Oxford: Elsevier, 2014: 1-32.

    [10]

    Hüneke H, Henrich R. Chapter 4-Pelagic Sedimentation in Modern and Ancient Oceans[C]//Hüneke H, Mulder T. Developments in Sedimentology. Elsevier, 2011: 63: 215-351.

    [11]

    冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    [12]

    Berger W H, Adelseck C G, Mayer L A. Distribution of carbonate in surface sediments of the Pacific Ocean[J]. Journalof Geophysical Research, 1976, 81(15): 2617-2627. doi: 10.1029/JC081i015p02617

    [13]

    Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic[J]. Paleoceanography, 2008, 23(1): 1-13. http://onlinelibrary.wiley.com/doi/10.1029/2007PA001456/full

    [14]

    中华人民共和国国家标准. 海底沉积物化学分析方法[S]. 2006.

    [15]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, Formation, and Occurrence of Polymetallic Nodules[C]//Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, Sharma R, Cham: Springer International Publishing, 2017: 23-63.

    [16]

    Hein J R, Koschinsky A. Deep-Ocean Ferromanganese Crusts and Nodules[C]//Turekian K K. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 2014, 273-291.

    [17]

    袁兆宪. 基于PXRF技术的露头和手标本尺度元素迁移富集规律研究[D]. 中国地质大学博士学位论文, 2014.

    [18]

    吴小勇, 陈永君, 王毅民. Si-PIN探测器便携式X荧光分析仪在海洋多金属结核结壳分析中的应用[J]. 岩矿测试, 2002, 21(1): 33-36. doi: 10.3969/j.issn.0254-5357.2002.01.007

    [19]

    Liao S, Tao C, Li H, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0

    [20]

    Gallhofer D, Lottermoser B. The Influence of Spectral Interferences on Critical Element Determination with Portable X-Ray Fluorescence(pXRF)[J]. Minerals, 2018, 8(8): 320. doi: 10.3390/min8080320

    [21]

    朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906020.htm

    [22]

    Tighe M, Rogan G, Wilson S C, et al. The potential for portable X-ray fluorescence determination of soil copper at ancient metallurgy sites, and considerations beyond measurements of total concentrations[J]. Journal of Environmental Management, 2018, 206: 373-382. http://www.sciencedirect.com/science/article/pii/S0301479717310484

    [23]

    Arne D C, Mackie R A, Jones S A. The use of property-scale portable X-ray fluorescence data in gold exploration: advantages and limitations[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 233-244. doi: 10.1144/geochem2013-233

    [24]

    Mcgladdery C, Weindorf D C, Chakraborty S, et al. Elemental assessment of vegetation viaportable X-ray fluorescence(PXRF)spectrometry[J]. Journal of Environmental Management, 2018, 210: 210-225. http://www.ncbi.nlm.nih.gov/pubmed/29348058

    [25]

    Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 2012, 10(12): 991-1003. doi: 10.4319/lom.2012.10.991

    [26]

    Hall G E M, Mcclenaghan M B, Pagé L. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J]. Geochemistry: Exploration, Environment, Analysis, 2015, 16(1): 62-84. http://www.researchgate.net/publication/291011615_Application_of_portable_XRF_to_the_direct_analysis_of_till_samples_from_various_deposit_types_in_Canada

    [27]

    杜海燕, 李凡, 吴金杰, 等. 同步辐射单能X射线空气质量衰减系数的测量[J]. 计量学报, 2019, 40(2): 333-336. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB201902026.htm

    [28]

    Arenas-Islas D, Huerta-Diaz M A, Norzagaray-López C O, et al. Calibration of portable X-ray fluorescence equipment for the geochemical analysis of carbonate matrices[J]. Sedimentary Geology, 2019, 391: 105517. doi: 10.1016/j.sedgeo.2019.105517

    [29]

    Rouillon M, Taylor M P. Can field portable X-ray fluorescence(pXRF)produce high quality data for application in environmental contamination research?[J]. Environmental Pollution, 2016, 214: 255-264. doi: 10.1016/j.envpol.2016.03.055

    中国大洋矿产资源研究开发协会办公室等. 中国大洋航次调查现场地质工作培训教材-西南印度洋合同区试用稿. 2016.

    赛默飞世尔科技有限公司. 尼通XL3t 950型pXRF设备对于标准物质检测限的说明. 2010.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1156
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2020-05-06
修回日期:  2020-12-28
刊出日期:  2021-03-15

目录