内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束

王帅, 李英杰, 王金芳, 董培培, 李红阳, 郭雷亮, 汪轩辰. 内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束[J]. 地质通报, 2021, 40(1): 82-94.
引用本文: 王帅, 李英杰, 王金芳, 董培培, 李红阳, 郭雷亮, 汪轩辰. 内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束[J]. 地质通报, 2021, 40(1): 82-94.
WANG Shuai, LI Yingjie, WANG Jinfang, DONG Peipei, LI Hongyang, GUO Leiliang, WANG Xuanchen. Discovery of Late Carboniferous adakite in Manita, Inner Mongolia, and its constrains on intra-oceanic subduction in eastern Paleo-Asian Ocean[J]. Geological Bulletin of China, 2021, 40(1): 82-94.
Citation: WANG Shuai, LI Yingjie, WANG Jinfang, DONG Peipei, LI Hongyang, GUO Leiliang, WANG Xuanchen. Discovery of Late Carboniferous adakite in Manita, Inner Mongolia, and its constrains on intra-oceanic subduction in eastern Paleo-Asian Ocean[J]. Geological Bulletin of China, 2021, 40(1): 82-94.

内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束

  • 基金项目:
    国家自然科学基金项目《内蒙古迪彦庙蛇绿岩带前弧玄武岩组合及其成因》(批准号:41972061)、中国地质调查局项目《内蒙古1:5万高力罕牧场三连等四幅区域地质矿产调查》(编号:1212011120711)、《北方山系西拉木伦与贺根山基础地质调查》(编号:DD20190004)
详细信息
    作者简介: 王帅(1993-), 男, 硕士, 构造地质学专业。E-mail: 1184386545@qq.com
    通讯作者: 李英杰(1976-), 女, 博士, 教授, 从事岩浆岩与大地构造研究工作。E-mail: liyingjie820@126.com
  • 中图分类号: P534.45;P588.12

Discovery of Late Carboniferous adakite in Manita, Inner Mongolia, and its constrains on intra-oceanic subduction in eastern Paleo-Asian Ocean

More Information
  • 在内蒙古西乌旗迪彦庙SSZ型蛇绿岩北部新发现一套晚石炭世马尼塔埃达克岩。该埃达克岩位于兴蒙造山带东段贺根山缝合带内,岩性为花岗闪长岩和斜长花岗岩。马尼塔埃达克岩SiO2含量为61.91%~75.16%,A12O3含量为13.54%~17.42%,MgO含量为0.33%~2.49%,富钠贫钾(Na2O=4.58%~5.48%,K2O=0.40%~2.08%,Na2O/K2O=2.35~12.96),属于低钾拉斑系列和钙碱性系列岩石;富Sr贫Y(Sr=309.55×10-6~433.99×10-6,Y=3.74×10-6~14.66×10-6),相对富集大离子亲石元素(LILE)K、Rb、Sr等,亏损高场强元素(HFSE)Nb、Ta、Zr、Ti、P等;稀土元素总量偏低(35.79×10-6~70.10×10-6),轻、重稀土元素分馏明显,(La/Yb)N值为1.59~10.11,无明显Eu异常(δEu=0.91~1.51),Yb含量为0.60×10-6~1.86×10-6,符合典型埃达克岩的地球化学特征。新获得的LA-ICP-MS锆石U-Pb年龄为315.76±0.94 Ma,表明马尼塔埃达克岩的形成时代为晚石炭世。马尼塔埃达克岩与迪彦庙SSZ型蛇绿岩、前弧玄武岩、白音呼舒奥长花岗岩等组成洋内俯冲岩石组合,表明古亚洲洋东段在晚石炭世并未关闭,处于洋内俯冲消减过程。

  • 加载中
  • 图 1  研究区大地构造位置示意图[23-24]

    Figure 1. 

    图 2  马尼塔埃达克岩地质简图

    Figure 2. 

    图 3  马尼塔埃达克岩中花岗闪长岩(a、b)和斜长花岗岩(c、d)野外与显微照片

    Figure 3. 

    图 4  马尼塔埃达克岩TAS(a)分类图解[48, 50]和SiO2-K2O(b)分类图解[49-50]

    Figure 4. 

    图 5  马尼塔埃达克岩稀土元素球粒陨石标准化配分曲线图(a)[50-51]和微量元素原始地幔标准化蛛网图(b)[50, 52]

    Figure 5. 

    图 6  马尼塔埃达克岩中典型锆石阴极发光(CL)图像(a)、U-Pb谐和图(b)及年龄加权平均值(c)

    Figure 6. 

    图 7  马尼塔埃达克岩YbN-(La/Yb)N(a)[50]和Y-Sr/Y构造判别图解(b)[50, 53]

    Figure 7. 

    图 8  马尼塔埃达克岩SiO2-MgO图解(a)[50]和(CaO+Na2O)-Sr图解(b)[50]

    Figure 8. 

    图 9  马尼塔埃达克岩(Y+Nb)-Rb构造判别图解[50, 63]

    Figure 9. 

    图 10  马尼塔埃达克岩Nb/Yb-Th/Yb构造判别图解[64]

    Figure 10. 

    表 1  马尼塔埃达克岩主量、微量和稀土元素分析结果

    Table 1.  Major, trace elements and REE analyses of the Manita adakite

    元素 花岗闪长岩 花岗闪长岩 花岗闪长岩 斜长花岗岩 花岗闪长岩 高Si埃达克岩 元素 花岗闪长岩 花岗闪长岩 花岗闪长岩 斜长花岗岩 花岗闪长岩 高Si埃达克岩
    XT02 XT03 XT06 XT08 XT10 XT02 XT03 XT06 XT08 XT10
    SiO2 66.93 65.56 64.53 75.16 61.91 64.80 V 53.69 78.88 53.14 31.62 92.15 95.00
    TiO2 0.39 0.60 0.47 0.12 0.56 0.56 Cr 31.46 9.14 14.12 4.69 11.83 41.00
    Al2O3 16.87 16.24 17.42 13.54 16.63 16.64 Hf 2.79 8.50 3.06 5.27 1.50
    Fe2O3 0.98 2.16 1.24 1.00 2.62 4.75 Sc 7.83 6.87 7.08 2.74 20.62
    FeO 1.27 1.86 1.85 0.46 3.22 Ta 0.19 0.17 1.42 0.14 0.13
    MnO 0.039 0.074 0.054 0.027 0.168 0.081 Co 8.33 9.55 10.96 2.13 11.17
    MgO 1.86 1.70 2.49 0.33 2.14 2.18 U 0.37 0.79 0.43 0.41 0.25
    CaO 4.83 3.62 2.75 1.32 3.97 4.63 La 6.44 13.13 6.81 8.45 4.14 19.20
    Na2O 5.12 4.65 5.48 4.89 4.58 4.19 Ce 14.06 27.86 15.90 15.59 9.03 37.30
    K2O 0.40 1.60 1.23 2.08 1.12 1.97 Pr 1.95 3.64 2.08 1.70 1.53
    P2O5 0.106 0.158 0.103 0.112 0.128 0.200 Nd 8.44 14.36 8.86 6.37 7.59 18.20
    烧失量 0.97 1.63 2.08 0.84 2.48 Sm 1.88 2.73 1.91 1.15 2.11 3.40
    总计 99.90 99.85 99.91 99.88 99.88 Eu 0.57 0.93 0.53 0.42 1.06 0.90
    Mg# 61 42 60 30 41 48 Gd 1.53 2.35 1.59 0.95 2.14 2.80
    Na2O/K2O 12.96 2.91 4.48 2.35 4.11 Tb 0.272 0.344 0.285 0.129 0.453
    A/CNK 0.96 1.02 1.13 1.06 1.04 Dy 1.44 2.00 1.59 0.73 2.91 1.90
    Ba 35.4 389.1 60.7 503.0 202.4 721.0 Ho 0.257 0.364 0.297 0.143 0.600
    Rb 9.39 24.77 27.16 33.34 19.13 52.00 Er 0.78 1.02 0.84 0.42 1.80 0.96
    Sr 433.99 431.60 309.55 324.50 433.65 565.00 Tm 0.111 0.169 0.131 0.069 0.279
    Y 7.67 9.44 8.49 3.74 14.66 10.00 Yb 0.70 1.05 0.83 0.60 1.86 0.88
    Zr 105.71 104.64 114.68 81.51 43.72 108.00 Lu 0.11 0.16 0.13 0.07 0.29 0.17
    Nb 1.15 2.40 1.28 1.27 0.68 6.00 ∑REE 38.54 70.10 41.79 36.78 35.79
    Th 1.04 2.86 1.50 2.78 0.68 LREE/HREE 6.41 8.40 6.33 10.82 2.47
    Pb 2.85 6.94 2.57 7.70 3.25 (La/Yb)N 9.13 8.95 8.16 10.11 1.59
    Ga 15.69 18.80 13.92 15.97 16.06 δEu 1.00 1.10 0.91 1.18 1.51
    Ni 17.57 5.71 22.76 2.27 6.28 20.00
    注:主量元素含量单位为%,稀土、微量元素含量单位为10-6;高Si埃达克岩为267个样品的平均值[50]
    下载: 导出CSV

    表 2  马尼塔埃达克岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 2.  LA-ICP-MS zircon U-Th-Pb isotopic analyses of the Manita adakite

    点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb U Th 206Pb/238U 207Pb/235U 207Pb/206Pb 208Pb/232Th 232Th/238U 206Pb/238U 207Pb/235U 207Pb/206Pb
    1 9 166 84 0.51 0.0505 0.0004 0.3514 0.0253 0.0505 0.0037 0.0131 0.0004 0.5055 0.0019 318 3 306 22 217 168
    2 11 214 122 0.57 0.0502 0.0003 0.3862 0.0121 0.0557 0.0017 0.0113 0.0003 0.5690 0.0101 316 2 332 10 442 68
    3 14 258 216 0.84 0.0499 0.0004 0.3436 0.0112 0.0499 0.0015 0.0112 0.0003 0.8370 0.0022 314 2 300 10 192 71
    4 10 207 118 0.57 0.0496 0.0004 0.3666 0.0124 0.0537 0.0018 0.0110 0.0003 0.5683 0.0011 312 2 317 11 356 74
    5 18 350 165 0.47 0.0505 0.0004 0.3825 0.0100 0.0549 0.0013 0.0104 0.0003 0.4711 0.0010 318 3 329 9 408 55
    6 4 81 53 0.66 0.0499 0.0004 0.3722 0.0296 0.0541 0.0043 0.0106 0.0003 0.6553 0.0033 314 3 321 26 376 179
    7 9 167 137 0.82 0.0499 0.0004 0.3636 0.0154 0.0528 0.0022 0.0116 0.0003 0.8178 0.0015 314 2 315 13 322 94
    8 7 147 96 0.66 0.0499 0.0004 0.3650 0.0177 0.0531 0.0025 0.0090 0.0003 0.6561 0.0042 314 2 316 15 333 108
    9 10 180 121 0.67 0.0505 0.0004 0.4299 0.0160 0.0617 0.0022 0.0117 0.0003 0.6745 0.0029 318 2 363 14 665 78
    10 6 122 60 0.49 0.0497 0.0004 0.2958 0.0238 0.0432 0.0034 0.0112 0.0004 0.4905 0.0019 312 2 263 21 157 198
    11 5 104 69 0.67 0.0497 0.0004 0.3836 0.0228 0.0560 0.0033 0.0114 0.0003 0.6666 0.0016 312 2 330 20 453 132
    12 12 216 197 0.91 0.0501 0.0003 0.3443 0.0128 0.0498 0.0018 0.0111 0.0002 0.9131 0.0025 315 2 300 11 187 84
    13 11 213 156 0.73 0.0504 0.0004 0.3662 0.0126 0.0527 0.0018 0.0112 0.0003 0.7304 0.0041 317 2 317 11 314 76
    14 9 180 88 0.49 0.0503 0.0003 0.3681 0.0137 0.0531 0.0019 0.0120 0.0003 0.4904 0.0012 317 2 318 12 331 83
    15 9 170 91 0.53 0.0503 0.0004 0.3817 0.0170 0.0551 0.0024 0.0115 0.0003 0.5332 0.0031 316 2 328 15 416 99
    16 8 159 92 0.58 0.0502 0.0004 0.3963 0.0148 0.0573 0.0021 0.0137 0.0004 0.5802 0.0031 316 2 339 13 502 82
    17 7 143 64 0.45 0.0503 0.0004 0.4229 0.0223 0.0610 0.0032 0.0142 0.0005 0.4460 0.0016 316 3 358 19 638 114
    18 12 223 132 0.59 0.0508 0.0004 0.3774 0.0144 0.0539 0.0020 0.0134 0.0003 0.5905 0.0017 320 2 325 12 365 84
    19 6 127 8 0.06 0.0509 0.0004 0.3739 0.0252 0.0533 0.0036 0.0148 0.0004 0.0628 0.0002 320 2 323 22 342 153
    20 14 277 110 0.40 0.0506 0.0004 0.3885 0.0140 0.0556 0.0020 0.0148 0.0003 0.3975 0.0015 319 2 333 12 438 79
    21 8 149 66 0.44 0.0494 0.0004 0.3616 0.0344 0.0531 0.0050 0.0143 0.0005 0.4426 0.0021 311 2 313 30 334 214
    22 7 128 53 0.41 0.0502 0.0004 0.3258 0.0270 0.0470 0.0039 0.0147 0.0004 0.4148 0.0021 316 2 286 24 51 197
    23 6 118 37 0.31 0.0532 0.0005 0.4302 0.0302 0.0587 0.0041 0.0125 0.0006 0.3099 0.0018 334 3 363 25 554 152
    24 11 221 93 0.42 0.0507 0.0003 0.3850 0.0134 0.0550 0.0019 0.0143 0.0004 0.4216 0.0008 319 2 331 11 413 78
    25 7 136 55 0.40 0.0502 0.0004 0.3702 0.0185 0.0535 0.0027 0.0139 0.0004 0.4044 0.0031 316 2 320 16 349 113
    注:测试单位为中国地质调查局天津地质调查中心;σ为测年误差绝对值
    下载: 导出CSV
  • [1]

    Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0

    [2]

    王焰, 张旗, 钱青. 埃达克(adakite)的地球化学特征及其构造意义[J]. 地质科学, 2000, 35(2): 251-256. doi: 10.3321/j.issn:0563-5020.2000.02.016

    [3]

    王强, 许继锋, 王建新, 等. 北大别山adakite型灰色片麻岩的确定及其与超高压变质作用的关系[J]. 科学通报, 2000, 45(10): 1017-1024. doi: 10.3321/j.issn:0023-074X.2000.10.002

    [4]

    王强, 许继锋, 赵振华. 一种新的火成岩——埃达克岩的研究综述[J]. 地球科学进展, 2001, 16(2): 20l-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200102009.htm

    [5]

    许继峰, 梅厚钧, 于学元, 等. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物[J]. 科学通报, 2001, 46(8): 684-688. doi: 10.3321/j.issn:0023-074X.2001.08.016

    [6]

    Marc J D, Xu J F, Pavel K, et al. Adakites: Some variation on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-140.

    [7]

    Drummond M S, Defant M J. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13): 21503-21521. doi: 10.1029/JB095iB13p21503

    [8]

    Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155

    [9]

    Samaniego P, Martin H. Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slahmelts and mantle wedge interactions[J]. Geology, 2002, 30(11): 967-970. doi: 10.1130/0091-7613(2002)030<0967:TFCATA>2.0.CO;2

    [10]

    刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, 2003, 77(3): 317-330. doi: 10.3321/j.issn:0001-5717.2003.03.004

    [11]

    Kay R W, Kay S M. Andean adakites: three ways to make them[J]. Acta Petrologica Sinica, 2002, 18(3): 303-311. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200203003.htm

    [12]

    Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust[J]. Geology, 2002, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    [13]

    Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary ence Letters, 2004, 220(1/2): 139-155. http://www.onacademic.com/detail/journal_1000035461839310_7611.html

    [14]

    Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    [15]

    Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 265(1/2): 123-137. http://www.sciencedirect.com/science/article/pii/S0012821X07006127

    [16]

    唐克东. 中朝陆台北侧褶皱带构造发展的几个问题[J]. 现代地质, 1989, 3(2): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ198902005.htm

    [17]

    邵济安. 中朝板块北缘中段地壳演化[M]. 北京: 北京大学出版社, 1991: 1-136.

    [18]

    徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学(D辑), 1997, 27(3): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm

    [19]

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2

    [20]

    Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China[J]. Earth & Planetary Science Letters, 2002, 202(1): 89-104. http://www.sciencedirect.com/science/article/pii/S0012821X02007744

    [21]

    Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1-21. http://petrology.oxfordjournals.org/external-ref?access_num=10.1029/2002TC001484&link_type=DOI

    [22]

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    [23]

    Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 348-370.

    [24]

    李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 2015, 31(5): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505020.htm

    [25]

    李英杰, 王金芳, 王根厚, 等. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J]. 岩石学报, 2018, 34(2): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802019.htm

    [26]

    徐备, 赵盼, 鲍庆中, 等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 2014, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm

    [27]

    唐克东, 张允平. 内蒙古缝合带的构造演化[C]//肖序常, 汤耀庆. 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社, 1991: 30-54.

    [28]

    Xiao W J, Windley B F, Huang B C. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

    [29]

    Jian P, Liu D Y, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2): 169-190. http://www.sciencedirect.com/science/article/pii/S0024493710001349

    [30]

    刘建峰, 李锦轶, 迟效国, 等. 内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境[J]. 地质学报, 2014, 88(9): 1677-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409005.htm

    [31]

    石玉若, 刘翠, 邓晋福, 等. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J]. 岩石学报, 2014, 30(11): 3155-3171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411005.htm

    [32]

    刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm

    [33]

    陈斌, 赵国春. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 2001, 47(4): 361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005

    [34]

    孙德有, 吴福元, 张艳斌, 等. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 2004(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm

    [35]

    刘建峰, 李锦轶, 孙立新, 等. 内蒙古巴林左旗九井子蛇绿岩锆石U-Pb定年: 对西拉木伦河缝合带形成演化的约束[J]. 中国地质, 2016, 43(6): 1947-1962. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606008.htm

    [36]

    李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗迪彦庙蛇绿岩的识别[J]. 岩石学报, 2012, 28(4): 1282-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204025.htm

    [37]

    李英杰, 王金芳, 李红阳, 等. 内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J]. 岩石学报, 2013, 29(8): 2719-2730. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308009.htm

    [38]

    王金芳, 李英杰, 李红阳, 等. 内蒙古乌兰沟埃达克岩锆石U-Pb年龄及构造环境[J]. 地质通报, 2018, 37(10): 1933-1943. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181017&flag=1

    [39]

    王金芳, 李英杰, 李红阳, 等. 贺根山缝合带白音呼舒奥长花岗岩锆石U-Pb年龄地球化学特征及构造意义[J]. 地质评论, 2019, 65(4): 857-872. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904007.htm

    [40]

    王金芳, 李英杰, 李红阳, 等. 内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J]. 地质学报, 2017, 91(8): 1776-1795. doi: 10.3969/j.issn.0001-5717.2017.08.009

    [41]

    Li Y J, Wang G H, Santosh M, et al. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2018, 59: 126-143. doi: 10.1016/j.gr.2018.02.018

    [42]

    Li Y J, Wang G H, Santosh M, et al. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia[J]. Earth and Planetary Science Letters, 2020, 535: 116087. doi: 10.1016/j.epsl.2020.116087

    [43]

    Li Y J, Wang J F, Xin H T, et al. Subduction initiation in the southeastern Palaeo-Asian Ocean: Constraints from early Permian adakites in suprasubduction zone ophiolites, central Inner Mongolia, North China[J]. Geological Journal, 2020, 55(3): 2044-2061. doi: 10.1002/gj.3696

    [44]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43. http://www.sciencedirect.com/science/article/pii/s0009254108003501

    [45]

    Anderson T. Correction of commen lead U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. http://www.researchgate.net/publication/222924679_correction_of_common_lead_in_u-pb_analyses_that_do_not_report_204pb

    [46]

    Yuan H L, Gao S, Liu X M. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    [47]

    李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm

    [48]

    Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms 2nd Edition[M]. Cambridge: Cambridge University Press, 2002: 33-39.

    [49]

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkeyu[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    [50]

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24. http://www.sciencedirect.com/science/article/pii/S002449370400266X

    [51]

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, 1984: 63-114.

    [52]

    Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[C]//Sauders A D, Norry M J. Geological Society of London. Special Publication, 1989: 313-345.

    [53]

    Defant M J, Drummond M S. Derivation of some modern arc magmas by of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    [54]

    Kelemen P B, Hangh K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2007, 3: 1-70. http://www.sciencedirect.com/science/article/pii/B9780080959757003235

    [55]

    Claesson S, Vetrin V, Bayanova T, et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51(1): 95-108. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=6cdb70f9b4446472f6199bd71ad85567&_udi=B6V6J-3YSY1JK-6&_user=6894003&_coverDate=03%2F01%2F2000&_rdoc=6&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235816%232000%23

    [56]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [57]

    Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171(3): 223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x

    [58]

    Pidgeon R T, Nemchin A A, Hitches G J. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages[J]. Contributions to Mineralogy and Petrology, 1998, 132(3): 288-299. doi: 10.1007/s004100050422

    [59]

    Michael P A, Nick P. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6414): 144-146.

    [60]

    张旗, 王二七, 王焰, 等. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 2001, 36(2): 248-255. doi: 10.3321/j.issn:0563-5020.2001.02.014

    [61]

    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0

    [62]

    Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    [63]

    Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F. Marginal basin geology. Geological Society of London Special Publication, 1984: 77-94.

    [64]

    Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48. http://www.sciencedirect.com/science/article/pii/S0024493707001375

    [65]

    薛怀民, 郭利军, 侯增谦, 等. 大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学[J]. 岩石矿物学杂志, 2010, 29(6): 811-823. doi: 10.3969/j.issn.1000-6524.2010.06.016

    [66]

    鲍庆中, 张长捷, 吴之理, 等. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报(地球科学版), 2007, 37(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701002.htm

    [67]

    杨俊泉, 张素荣, 刘永顺, 等. 内蒙古东乌旗莫合尔图石炭纪闪长岩的发现: 来自锆石U-Pb年代学的证据[J]. 现代地质, 2014, 28(3): 472-477. doi: 10.3969/j.issn.1000-8527.2014.03.003

    [68]

    朱俊宾, 孙立新, 任纪舜, 等. 内蒙古东乌旗地区格根敖包组火山岩锆石LA-MC-ICP-MS U-Pb年龄及其地质意义[J]. 地球学报, 2015, 36(4): 466-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201504012.htm

    [69]

    程新彬, 何付兵, 王玮, 等. 内蒙古东乌珠穆沁旗查干敖包花岗岩体时代、成因及地质意义[J]. 现代地质, 2017, 31(3): 508-520. doi: 10.3969/j.issn.1000-8527.2017.03.008

    [70]

    王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的约束[J]. 地质学报, 2017, 91(7): 1467-1482. doi: 10.3969/j.issn.0001-5717.2017.07.005

    [71]

    Sengor A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    [72]

    刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm

    [73]

    公繁浩, 黄欣, 郑月娟, 等. 内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义[J]. 地质与资源, 2013, 22(6): 478-483. doi: 10.3969/j.issn.1671-1947.2013.06.007

    [74]

    Shang Q H. The discovery and significance of Permian radiolarians in the northern and middle Inner Mongolia, Northern Orogenic belt[J]. Chinese Science Bulletin, 2004, 49(24): 2574-2579. doi: 10.1360/csb2004-49-24-2574

    [75]

    曾俊杰, 郑有业, 齐建宏, 等. 内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J]. 地球科学, 2008, 33(6): 755-763. doi: 10.3321/j.issn:1000-2383.2008.06.003

    [76]

    张玉清. 内蒙古苏尼特左旗巴音乌拉二叠纪埃达克质花岗闪长岩类地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2009, 28(4): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200904005.htm

    [77]

    郝百武. 内蒙古那仁乌拉埃达克质花岗岩的发现、成因、锆石U-Pb年龄及其构造意义[J]. 矿物岩石, 2012, 32(1): 28-39. doi: 10.3969/j.issn.1001-6872.2012.01.005

    [78]

    刘军, 武广, 李铁刚, 等. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学、地球化学、Sr-Nd同位素组成及其地质意义[J]. 岩石学报, 2014, 30(1): 95-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401007.htm

    [79]

    邓晋福, 冯艳芳, 狄永军, 等. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 2015, 61(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm

    [80]

    Safonova I, Kotlyarov A, Krivonogov S, et al. Intra-oceanic arcs of the Paleo-Asian Ocean[J]. Gondwana Research, 2017, 50: 167-194. doi: 10.1016/j.gr.2017.04.005

    [81]

    薛建平, 苏尚国, 李成元, 等. 内蒙古索伦山地区蛇绿岩岩石单元地质特征、就位机制及时限[J]. 现代地质, 2017, 31(3): 498-507. doi: 10.3969/j.issn.1000-8527.2017.03.007

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1015
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2020-06-10
修回日期:  2020-10-15
刊出日期:  2021-01-15

目录