Response of magmatic activity to the closure of Changning-Menglian Palaeothys in western Yunnan: Evidence from geo-geochemical study on granite in southern section of Lincang pluton
-
摘要:
临沧花岗岩岩体(简称临沧岩体)是滇西澜沧江地区南段出露面积最大的复式岩基,也是特提斯构造域的重要组成单元,其岩石类型主要为黑云母二长花岗岩。锆石样品得出的定年结果为225.1±6.1 Ma,表明这些花岗岩类侵位于晚三叠世。临沧花岗岩的K2O/Na2O值大于1,铝饱和指数A/CNK=1.05~1.95,属高钾钙碱性过铝-强过铝质S型花岗岩。岩石总体上富集轻稀土元素((La/Yb)N=6.06~21.01),亏损重稀土元素,并显示出明显的负Eu异常(δEu=0.20~0.38)。岩石地球化学特征指示,临沧花岗岩应为昌宁-孟连古特提斯封闭过程的产物,原岩为中下地壳贫粘土的变质砂岩和变质泥岩,其Pearce构造判别图解中的同碰撞属性是对古特提斯封闭及保山-思茅地块碰撞的响应。
Abstract:Lincang intrusive, as the largest exposed compound batholith of southern Lancangjiang in western Yunnan, and an important component of tethys tectonic domain, is mainly biotite monzogranite in lithology.The zircon sample collected frome granite was dated to 225.1±6.1 Ma, suggesting that these intrusives were emplaced during the Late Triassic.The K2O/Na2O value of Lincang granite is greater than 1, and the aluminum saturation index A/CNK ranges from1.05 to 1.95, indicating that Lancang intursives are derived from S-type granite with high potassium calcium basic peraluminum-super peraluminum.Intursives are remarkably characterized by enriched LREE and depleted HREE with (La/Yb)N=6.06~21.01 and δEu of 0.20~0.38.The petro-geochemistry of intusives indicates that the Lincang granite should be the product of the Changning-Menglian Palaeothys closure process, and the original rock of Lincang granite is lithologically clay-poor metamorphic sandstone and metamorphic mudstone in the middle and lower crust.The syncollision represented in its Pearce structure discrimination diagram is a response to the Palaeothys ocean closure and the Baoshan-Simao block collision.
-
Key words:
- Lincang granite /
- U-Pb zircon chronology /
- Palaeothys /
- continental collision
-
图 1 云南地区大地构造分区图(a)和澜沧江南段地质图(b)[9]
Figure 1.
图 7 稀土元素球粒陨石标准化配分图(a)和硝塘花岗岩微量元素原始地幔标准化蛛网图(b)[29]
Figure 7.
图 11 硝塘花岗岩Pearce图解[38]
Figure 11.
表 1 硝塘花岗岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1. U-Th-Pb ages of LA-ICP-MS zircon for Xiaotang granite
点号 Th/10-6 U/10-6 Th/U 比值 年龄/Ma 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ LC-102-1.1 881 2490 0.35 0.05581 0.00247 0.26753 0.01135 0.03561 0.00050 456 98 241 9 226 3 LC-102-2.1 459 1788 0.26 0.05440 0.00270 0.26146 0.01250 0.03564 0.00060 387 111 236 10 226 4 LC-102-3.1 729 2553 0.29 0.06210 0.00279 0.29061 0.01229 0.03457 0.00044 676 92 259 10 219 3 LC-102-4.1 490 1382 0.36 0.06474 0.00419 0.27939 0.01613 0.03225 0.00050 765 132 250 13 205 3 LC-102-5.1 1083 6811 0.16 0.05565 0.00209 0.27122 0.00921 0.03546 0.00043 439 83 244 7 225 3 LC-102-6.1 532 1507 0.35 0.05067 0.00216 0.24801 0.01047 0.03560 0.00048 233 98 225 9 225 3 LC-102-7.1 698 1629 0.43 0.05211 0.00223 0.25625 0.01111 0.03562 0.00048 300 98 232 9 226 3 LC-102-8.1 543 1607 0.34 0.05211 0.00238 0.25740 0.01216 0.03555 0.00060 300 104 233 10 225 4 LC-102-9.1 710 3481 0.20 0.04942 0.00148 0.24390 0.00764 0.03562 0.00040 169 70 222 6 226 3 LC-102-10.1 575 1595 0.36 0.05171 0.00206 0.25576 0.01079 0.03559 0.00042 272 86 231 9 225 3 LC-102-11.1 533 2219 0.24 0.04989 0.00170 0.24552 0.00856 0.03554 0.00038 191 112 223 7 225 2 LC-102-12.1 774 1713 0.45 0.05351 0.00243 0.26134 0.01154 0.03563 0.00061 350 97 236 9 226 4 LC-102-13.1 518 1601 0.32 0.05131 0.00238 0.25297 0.01234 0.03551 0.00060 254 110 229 10 225 4 LC-102-14.1 643 2385 0.27 0.05342 0.00206 0.26155 0.00984 0.03558 0.00053 346 87 236 8 225 3 LC-102-15.1 696 1340 0.52 0.05223 0.00269 0.25567 0.01252 0.03553 0.00059 295 119 231 10 225 4 注:测试单位为中国地质大学(武汉)地质过程与矿产资源国家重点实验室 表 2 硝塘花岗岩的主量、微量和稀土元素含量
Table 2. Contents of major, trace and rare earth elements of Xiaotang granite
样号 LC-093 LC-101 LC-107 LC-108 LC-140 LC-141 LC-142 LC-143 SiO2 73.96 73.24 75.68 74.94 74.69 75.62 74.8 78.13 TiO2 0.25 0.196 0.113 0.14 0.251 0.141 0.14 0.136 Al2O3 13.28 13.53 12.89 13.16 14.6 12.89 13.28 11.9 Fe2O3 0.458 0.116 0.091 0.44 0.4 0.035 0.298 0.324 FeO 1.54 1.62 0.981 0.844 0.344 0.981 0.926 0.145 MnO 0.037 0.064 0.043 0.034 0.004 0.017 0.022 0.003 MgO 0.808 0.767 0.424 0.472 0.542 0.517 0.679 0.303 CaO 0.196 1.56 0.979 0.864 0.085 0.33 0.224 0.126 Na2O 2.52 3.28 3.11 3.05 0.086 3 2.94 1.71 K2O 5.12 4.28 4.72 4.6 6.66 4.97 5.05 5.65 P2O5 0.064 0.072 0.055 0.062 0.026 0.044 0.036 0.029 烧失量 1.356 0.696 0.583 0.972 1.374 1.008 1.338 1.11 总量 99.659 99.487 99.749 99.642 99.127 99.624 99.799 99.631 Na2O+K2O 7.64 7.56 7.83 7.65 6.75 7.97 7.99 7.36 K2O/Na2O 2.03 1.30 1.52 1.51 77.44 1.66 1.72 3.30 A/CNK 1.32 1.05 1.07 1.14 1.95 1.18 1.24 1.30 Sr 57.60 68.4 37.6 39.9 15.2 38.3 41.0 27.8 V 38.8 35.2 18.8 25.7 36.3 26.4 30.4 25.3 Cr 26.9 26.4 11.2 13.7 12.8 12.8 17.1 11.3 Co 4.72 4.5 1.28 2.28 1.76 1.84 1.62 2.62 Ni 6.04 4.66 2.9 4.05 3.9 2.54 3.14 2.91 Sc 8.36 6.8 4.16 5.9 7.6 6.36 5.17 5.41 Ga 19.8 16.9 13.9 15 0.23 0.24 0.5 0.28 Rb 260 323 294 356 430 312 324 316 Y 24.6 31 15.6 20.6 12.9 13.9 18.1 22.9 Zr 123 84.8 64.7 71.2 128 83.7 84 80.8 Nb 17.6 15.2 10.5 10.5 14.8 13.2 14.8 12.4 Cs 11.6 21 19.7 30 9.3 10.6 13.7 7.35 Pb 67.4 47.4 45.8 49.2 15.9 43.4 37.4 19.0 Ba 476 279 180 282 242 182 214 316 Th 26.4 21.4 16.1 17.3 27 23.1 21.8 22.8 U 7.83 6.18 23.7 20.8 3.8 20.1 19.7 12.0 La 34.6 26.8 16.2 20.4 37.2 22.2 20.7 72.8 Ce 71.3 55.4 33.5 44.2 77.8 46.8 44.5 157 Pr 8.08 6.5 3.77 5.2 9.06 5.62 5.58 14.9 Nd 28.3 23 14 18.2 31.5 20.2 20.4 55.8 Sm 5.58 5.17 2.96 4.1 5.61 4.3 4.78 10.2 Eu 0.52 0.5 0.31 0.48 0.4 0.3 0.34 0.6 Gd 4.68 4.68 2.53 3.55 4.02 3.28 3.67 7.61 Tb 0.75 0.9 0.45 0.66 0.47 0.5 0.64 1.03 Dy 3.44 5.23 2.43 3.72 1.94 2.42 3.32 4.77 Ho 0.64 0.99 0.45 0.7 0.33 0.41 0.61 0.85 Er 1.86 2.92 1.3 2.02 1.04 1.23 1.81 2.51 Tm 0.3 0.49 0.21 0.36 0.17 0.21 0.32 0.41 Yb 2.04 3.17 1.6 2.3 1.27 1.58 2.32 2.97 Lu 0.34 0.5 0.23 0.34 0.22 0.25 0.39 0.44 Nb/Ta 7.27 4.32 4.17 3.70 4.61 3.85 3.49 5.85 Zr/Hf 28.74 23.69 24.69 23.12 25.05 26.57 21.48 25.09 Ga*104/Al 2.72 2.29 2.00 2.10 2.39 2.35 2.40 2.32 ΣREE 162.43 136.25 79.94 106.23 171.03 109.30 109.38 331.89 LREE/HREE 3.84 2.35 2.85 2.70 7.23 4.18 3.09 7.16 δEu 0.30 0.30 0.34 0.38 0.25 0.23 0.24 0.20 注:A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比[28];主量元素含量单位为%,微量和稀土元素含量单位为10-6;测试单位为澳实分析检测(广州)公司 -
[1] 王舫, 刘福来, 刘平华, 等. 澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义[J]. 岩石学报, 2014, 30(10): 3034-3050. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410018.htm
[2] 彭头平. 澜沧江南带三叠纪碰撞后岩浆作用、岩石成因及其构造意义[D]. 中国科学院研究生院(广州地球化学研究所)博士学位论文, 2006.
[3] 廖世勇, 尹福光, 王冬兵, 等. 滇西"三江"地区临沧花岗岩基中三叠世碱长花岗岩的发现及其意义[J]. 岩石矿物学杂志, 2014, 33(1): 1-12. doi: 10.3969/j.issn.1000-6524.2014.01.001
[4] 刘昌实, 朱金初, 徐夕生, 等. 滇西临沧复式岩基特征研究[J]. 云南地质, 1989, (Z1): 189-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD1989Z1000.htm
[5] 李兴林. 临沧复式花岗岩基的基本特征及形成构造环境的研究[J]. 云南地质, 1996, (1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD601.000.htm
[6] 朱勤文, 莫宣学, 张双全. 南澜沧江古特提斯演化的岩浆岩证据[J]. 特提斯地质, 1999, (23): 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199900001.htm
[7] 范蔚茗, 彭头平, 王岳军. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录[J]. 地学前缘, 2009, 16(6): 291-302. doi: 10.3321/j.issn:1005-2321.2009.06.031
[8] 刘德利, 刘继顺, 张彩华, 等. 滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境[J]. 岩石矿物学杂志, 2008, (1): 23-31. doi: 10.3969/j.issn.1000-6524.2008.01.003
[9] 孔会磊, 董国臣, 莫宣学, 等. 滇西三江地区临沧花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 岩石学报, 2012, 28(5): 1438-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205010.htm
[10] 黄汲清, 陈炳蔚. 中国及邻区特提斯海的演化[M]. 北京: 地质出版社, 1987: 1-187.
[11] 赖绍聪, 秦江锋, 李学军, 等. 昌宁-孟连缝合带乌木龙-铜厂街洋岛型火山岩地球化学特征及其大地构造意义[J]. 地学前缘, 2010, 17(3): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003006.htm
[12] 王义昭. 滇西昌宁-孟连带南部孟连-曼信地区晚古生代地层若干问题[J]. 地质论评, 2005, (1): 1-9. doi: 10.3321/j.issn:0371-5736.2005.01.001
[13] 刘本培, 冯庆来, Chonglakmani C, 等. 滇西古特提斯多岛洋的结构及其南北延伸[J]. 地学前缘, 2002, (3): 161-171. doi: 10.3321/j.issn:1005-2321.2002.03.020
[14] 张凡, 冯庆来, 段向东, 等. 滇西南昌宁-孟连构造带西带研究初探——以耿马弄巴剖面为例[J]. 地质科技情报, 2006, (3): 13-20. doi: 10.3969/j.issn.1000-7849.2006.03.003
[15] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-13. doi: 10.1016/j.jseaes.2012.12.020
[16] Nianqiao F, Benpei L, Qinglai F, et al. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan[J]. Journal of Southeast Asian Earth Sciences, 1994, 9(4): 363-374. doi: 10.1016/0743-9547(94)90048-5
[17] Wu H, Boulter C A, Ke B, et al. The Changning-Menglian suture zone; a segment of the major Cathaysian-Gondwana divide in Southeast Asia[J]. Tectonophysics, 1995, 242(3/4): 267-280.
[18] 钟大赉, 等. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 1-231.
[19] 彭头平, 王岳军, 范蔚茗, 等. 澜沧江南段早中生代酸性火成岩SHRIMP锆石U-PB定年及构造意义[J]. 中国科学(D辑), 2006, (2): 123-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200602001.htm
[20] Zhang R Y, Cong B L, Maruyama S, et al. Metamorphism and tectonic evolution of the Lancang paired metamorphic belts, south-western China. [J]. Journal of Metamorphic Geology, 1993, 11(4): 605-619. doi: 10.1111/j.1525-1314.1993.tb00175.x
[21] 刘俊来, 宋志杰, 曹淑云, 等. 印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例[J]. 岩石学报, 2006, (4): 775-786. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604002.htm
[22] Taylor S R, Mclennan S M. The Geochemical Evolution of the Continental-Crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
[23] 卫管一, 冯国荣, 罗再文, 等. 滇西澜沧群、崇山群地层层序及其火山作用和变质作用[J]. 成都地质学院学报, 1984, (2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198402001.htm
[24] 李朋武, 高锐, 崔军文, 等. 西藏和云南三江地区特提斯洋盆演化历史的古地磁分析[J]. 地球学报, 2005, (5): 3-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200505000.htm
[25] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. http://ci.nii.ac.jp/naid/10030175250
[26] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2009, (1/2): 34-43.
[27] Ludwig K R. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley CA: Berkeley Geochronology Center Special Publication, 2012, 5: 1-75. http://www.researchgate.net/publication/309186832_isoplot_375_a_geochronological_toolkit_for_microsoft_excel
[28] Thornton C, Tuttle O. Chemistry of igneous rocks, part1: Differentiation index. America[J]. Journal of Science, 1960, 280: 664-684.
[29] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins.Geological Society Special Publication, 1989, 42: 313-345.
[30] 刘振声, 王洁民. 川藏花岗岩的稀土元素地球化学特征[C]//青藏高原地质文集. 成都: 四川科技出版社, 1990: 99-117.
[31] 王德滋, 刘昌实, 沈渭洲, 等. 桐庐Ⅰ型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, (1): 44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
[32] 陈小明, 王汝成, 刘昌实, 等. 广东从化佛冈(主体)黑云母花岗岩定年和成因[J]. 高校地质学报, 2002, (3): 293-307. doi: 10.3969/j.issn.1006-7493.2002.03.006
[33] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithosphere, 1998, (1/4): 29-44. http://www.sciencedirect.com/science/article/pii/s0024493798000243
[34] Jung S, Pfänder J A. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 2007, 19(6): 859-870. doi: 10.1127/0935-1221/2007/0019-1774
[35] Petford N, Cruden A R, Mccaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 2000, 408(6813): 669-673. doi: 10.1038/35047000
[36] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence(Article)[J]. Earth-Science Reviews, 2003, (1/2): 1-18. http://www.sciencedirect.com/science/article/pii/S0012825202001071
[37] 杨启军, 徐义刚, 黄小龙, 等. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义[J]. 岩石学报, 2009, 25(5): 1092-1104. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905005.htm
[38] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, (4): 956-983.
[39] 吴彦旺. 龙木错-双湖-澜沧江洋历史记录[D]. 吉林大学博士学位论文, 2013.
[40] 沈上越, 冯庆来, 刘本培, 等. 昌宁-孟连带洋脊、洋岛型火山岩研究[J]. 地质科技情报, 2002, (3): 13-17. doi: 10.3969/j.issn.1000-7849.2002.03.003
[41] 朱勤文, 张双全, 谭劲. 确定南澜沧江缝合带的火山岩地球化学证据[J]. 岩石矿物学杂志, 1998, (4): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW804.001.htm
[42] 吴随录. 三江地区南澜沧江临沧花岗岩的特点、时代及区域构造意义[D]. 中国地质大学(北京)硕士学位论文, 2010.
[43] England P C, Thompson A B. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust[J]. Journal of Petrology, 1984, 25(4): 894-928. doi: 10.1093/petrology/25.4.894
[44] 帅开业. 兰坪-思茅中、新生代盆地成因新解[J]. 地学前缘, 2000, 7(4): 380. doi: 10.3321/j.issn:1005-2321.2000.04.033