The tectonic setting of the Early-Middle Triassic volcanic-sedimentary succession in Funing-Napo area, the south margin of Nanpanjiang Basin, South China
-
摘要:
南盘江盆地南缘发育大量早—中三叠世岩浆岩和巨厚三叠系,为研究沿中越边界一带是否发生洋盆俯冲消亡过程提供了重要的岩浆-沉积证据。选取中越边界地区出露面积最大的富宁—那坡地区早—中三叠世火山岩及相关沉积作为研究对象,通过系统的地质填图和剖面测量,查明这套火山-沉积组合具有下部玄武安山岩,上覆碳酸盐岩质砾岩、含砾粗砂岩和钙质砂岩的沉积序列,与岛弧环境火山-沉积序列相似。玄武安山岩SHRIMP锆石U-Pb定年结果为247±1 Ma和246±3 Ma,与野外产于中三叠统碎屑岩之下的地质事实相符。结合前人研究成果,确定这套火山岩形成于早—中三叠世(247~242 Ma)。全岩地球化学分析结果显示,玄武安山岩富集大离子亲石元素(LILEs,Rb、Th和U)和轻稀土元素(LREE),其具有明显的Nb、Ta和Ti负异常。火山-沉积序列和火山岩地球化学特征表明,富宁—那坡地区早—中三叠世火山-沉积组合形成于与俯冲相关的弧环境。中越边界地区早—中三叠世弧火山岩与蛇绿混杂岩带的时空展布特征表明,该地区晚古生代洋盆发生了向北的俯冲消减。
Abstract:The Late Paleozoic to Early Mesozoic tectonic evolution process along the Sino-Vietnam border, particularly the subduction polarity of the Late Paleozoic ocean basin, is still controversial.Massive Early—Middle Triassic magmatic rocks and thick Triassic siliciclastic system occurred in the south margin of Nanpanjiang Basin provide important magmatic and sedimentary evidences for settling dispute.The Funing-Napo Triassic volcanic rocks, as the largest magmatic outcrop, are the ideal object for studying the tectonic evolution along the Sino-Vietnam border.The systematic profile survey and geological mapping indicates that the volcanic-sedimentary succession that consists of lower basaltic andesites overlain by carbonate conglomerates, pebbly sandstones and calcareous sandstones, which is similar to the volcanic-sedimentary sequence in island arc setting.Zircon SHRIMP U-Pb dating results of basaltic andesites are 247±1 Ma and 246±3 Ma, which are consist with field occurrence that basaltic andesite is overlain by Middle Triassic clastic rocsk.Combined with previous results, it is determined that the volcanic rocks were formed at 247~242 Ma.The geochemical analysis shows that basaltic andesites are enriched in LILEs (Rb, Th and U) and LREE, with a remarkable negative Nb-Ta and Ti anomalies.Both the geochemical characteristics of basaltic andesites and the volcanic-sedimentary sequence suggest that the Early—Middle Triassic volcanic-sedimentary succession was formed in a subduction-related arc setting.The spatial and temporal distribution characteristics of Early-Middle Triassic volcanic arc and ophiolitic mélange, implies that a north-dipping subduction occurred along Sino-Vietnam border.
-
Key words:
- basaltic andesite /
- Island arc /
- Triassic /
- Nanpanjiang Basin /
- South China
-
图 9 富宁—那坡地区早—中三叠世火山岩Ta/Yb-Th/Yb图解[48]
Figure 9.
表 1 富宁—那坡地区火山岩SHRIMP锆石U-Pb分析结果
Table 1. SHRIMP zircon U-Pb data for the volcanic rocks in the Funing-Napo area
测点 Pb/10-6 U/10-6 Th/10-6 Th/U 207Pb/235U % 206Pb/238U % 误差相关系数 206Pb/238U年龄/Ma σ 207Pb/206Pb年龄/Ma σ 不谐和度 NP20-1 — 473 152 0.33 0.2610 6.1 0.03951 1.1 0.173 250 3 95 140 -163 NP20-2 — 1329 1040 0.81 0.2679 2.4 0.03899 0.5 0.204 247 1 187 54 -32 NP20-3 — 652 134 0.21 0.2863 2.7 0.03944 0.7 0.252 249 2 313 58 20 NP20-4 0.16 287 150 0.54 0.2800 3.6 0.03932 1.0 0.277 249 2 267 80 7 NP20-5 — 212 105 0.51 0.2570 7.3 0.03931 1.2 0.161 249 3 68 170 -265 NP20-6 — 887 689 0.80 0.2798 2.6 0.03873 0.8 0.301 245 2 302 56 19 NP20-7 — 441 81 0.19 0.2310 8.7 0.03835 0.9 0.105 243 2 -131 210 285 NP20-8 — 1020 630 0.64 0.2733 2.5 0.03904 0.6 0.239 247 1 231 56 -7 NP20-9 — 2912 2736 0.97 0.2840 1.5 0.04024 0.4 0.242 254 1 249 33 -2 NP20-10 — 521 102 0.20 0.2717 3.2 0.03890 0.7 0.231 246 2 225 72 -9 NP20-11 — 471 291 0.64 0.2662 3.1 0.03778 0.8 0.252 239 2 246 69 3 NP20-12 — 749 424 0.58 0.2849 2.6 0.03914 0.9 0.341 248 2 320 56 23 NP20-13 — 654 120 0.19 0.2630 3.8 0.03934 0.7 0.174 249 2 123 88 -102 NP20-14 — 294 179 0.63 0.2550 9.6 0.03821 1.1 0.113 242 3 118 230 -105 NP20-15 — 212 137 0.67 0.2570 4.2 0.03852 1.1 0.260 244 3 122 96 -99 DM12-1 0.16 459 325 0.73 0.2884 3.1 0.03914 1.6 0.529 248 4 348 60 29 DM12-2 — 1251 739 0.61 0.2760 2.6 0.03850 1.7 0.649 244 4 285 45 15 DM12-3 — 264 177 0.69 0.2630 4 0.03745 1.7 0.431 237 4 239 83 1 DM12-4 — 263 120 0.47 0.2500 6 0.03861 2.1 0.342 244 5 45 140 -438 DM12-5 — 172 74 0.45 0.2480 6.9 0.03989 1.9 0.276 252 5 -50 160 603 DM12-6 — 1559 703 0.47 0.2702 2.5 0.03934 1.6 0.617 249 4 186 46 -34 DM12-7 — 518 323 0.64 0.2747 2.7 0.03837 1.9 0.688 243 4 282 45 14 DM12-8 — 214 103 0.50 0.2420 4.9 0.03828 1.8 0.368 242 4 -11 110 2262 DM12-9 — 843 583 0.71 0.2924 2.8 0.04062 2.0 0.723 257 5 295 44 13 DM12-10 — 1118 605 0.56 0.2819 3 0.03996 1.6 0.532 253 4 248 58 -2 DM12-11 — 222 103 0.48 0.2790 4.5 0.04011 1.8 0.401 254 5 215 95 -18 DM12-12 — 820 135 0.17 0.2620 8.1 0.03813 1.6 0.203 241 4 190 180 -27 DM12-13 0.06 936 147 0.16 0.6700 1.9 0.07820 1.6 0.823 485 7 679 23 28 DM12-14 0.08 748 493 0.68 0.2796 2.3 0.03896 1.6 0.689 246 4 288 38 14 表 2 富宁—那坡地区火山岩全岩主量、微量和稀土元素分析结果
Table 2. Major, trace element and REE contents of the volcanic rocks in the Funning-Napo area
元素 11NP21-2 11NP21-3 11NP21-4 11NP21-5 GCH-2 GCH-4 13DM-2 13DM-3 13DB-7 14WD-4 元素 11NP21-2 11NP21-3 11NP21-4 11NP21-5 GCH-2 GCH-4 13DM-2 13DM-3 13DB-7 14WD-4 SiO2 56.50 57.32 56.91 56.49 54.64 54.57 51.68 51.46 59.66 58.37 Hf 4.39 4.2 3.96 4.46 3.55 3.42 3.23 3.21 5.27 5.74 TiO2 0.84 0.86 0.81 0.84 0.87 0.88 0.87 0.89 0.93 0.93 Ta 0.52 0.51 0.51 0.52 0.4 0.42 0.43 0.41 0.7 0.7 Al2O3 14.79 14.76 14.65 14.83 14.69 14.88 15.20 15.83 14.19 14.55 Co 33 31.2 30 34 37.9 39 38.1 39.7 26.6 26.9 TFe2O3 9.01 8.58 8.78 9.17 9.10 9.12 9.16 8.95 8.78 8.67 U 2.16 2.15 1.98 2.05 1.74 1.78 1.71 1.8 3.35 2.65 MnO 0.13 0.12 0.12 0.13 0.14 0.15 0.16 0.16 0.13 0.12 La 20.8 20.1 18.9 19.8 16.6 16.5 17.3 15.9 32.1 23.6 MgO 6.56 6.07 6.43 6.75 6.71 6.87 6.47 6.59 4.83 5.08 Ce 41.8 40.5 39.2 40.5 34.4 33.6 35.6 33.2 66.0 47.2 CaO 8.41 8.44 8.49 7.86 9.89 8.98 13.71 12.77 6.23 9.06 Pr 4.97 4.96 4.73 5.00 4.20 4.21 4.64 4.03 8.09 5.75 Na2O 2.05 2.05 2.00 2.36 2.72 3.00 2.54 3.05 2.56 2.35 Nd 21.2 20.5 20.1 20.5 17.4 17.1 19.0 17.0 31.8 24.2 K2O 1.60 1.70 1.70 1.46 1.13 1.45 0.11 0.21 2.57 0.73 Sm 4.95 4.64 4.56 4.84 4.14 3.91 4.56 4.00 7.00 5.81 P2O5 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.12 0.12 Eu 0.99 1.02 0.97 0.99 1.11 1.10 1.11 0.98 1.41 1.40 烧失量 1.91 1.75 2.24 1.81 2.78 2.86 3.00 3.27 2.11 3.19 Gd 5.37 5.20 4.79 5.31 4.84 4.95 4.86 4.31 6.98 6.87 Mg# 59 59 59 60 60 60 59 60 52 54 Tb 0.92 0.88 0.83 0.87 0.77 0.78 0.86 0.77 1.20 1.10 Ba 302 270 273 248 330 467 37.4 44.3 451 151 Dy 5.74 5.63 5.39 5.71 4.88 4.76 5.34 4.91 7.19 7.17 Rb 61.8 68.4 64.3 57.3 37.6 50.8 3.29 5.25 115 39.9 Ho 1.21 1.16 1.15 1.20 1.04 1.04 1.16 0.98 1.50 1.37 Sr 144 154 136 120 145 179 137 148 106 123 Er 3.70 3.49 3.34 3.64 3.05 3.25 3.51 3.07 4.53 4.42 Y 32 32.3 29 32.3 33.5 34.1 34.3 32.6 41.3 37.6 Tm 0.51 0.52 0.50 0.51 0.44 0.43 0.49 0.45 0.63 0.59 Zr 140 141 128 139 129 134 110 110 171 173 Yb 3.40 3.46 3.23 3.41 2.97 2.79 3.35 2.87 4.09 3.95 Nb 6.41 6.35 6.03 6.29 5.35 5.68 4.94 4.92 7.99 7.9 Lu 0.53 0.51 0.51 0.53 0.43 0.42 0.50 0.43 0.60 0.60 Th 9.47 9.24 8.75 9.26 7.82 7.83 8.27 7.22 15.4 12.6 ΣREE 116.09 112.57 108.20 112.81 96.27 94.84 102.28 92.90 173.12 134.03 Pb 9.66 9.98 11.5 12.5 7.8 9.16 9.66 11.2 11.9 13.2 δEu 0.59 0.64 0.63 0.60 0.76 0.77 0.72 0.72 0.61 0.68 Ni 63.6 58.9 54.3 63 60.6 50.5 59.1 65.2 40.2 47.2 (La/Yb)N 3.7 3.5 3.6 3.5 3.4 3.6 3.1 3.4 4.8 3.6 V 177 169 160 174 215 223 198 210 141 162 Cr 297 260 260 284 227 243 206 222 173 206 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340(2): 166-179.
[2] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020
[3] Cai J, Zhang K. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 2009, 467(1): 35-43. http://www.sciencedirect.com/science/article/pii/S0040195108006100
[4] Faure M, Lepvrier C, Nguyen V V, et al. The South China block-Indochina collision: Where, when, and how?[J]. Journal of Asian Earth Sciences, 2014, 79: 260-274. doi: 10.1016/j.jseaes.2013.09.022
[5] Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(Ⅰ): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks[J]. Lithos, 2009, 113(3/4): 748-766.
[6] Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(Ⅱ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4): 767-784. http://www.sciencedirect.com/science/article/pii/S0024493709001480
[7] Lai C, Meffre S, Crawford A J, et al. The Central Ailaoshan ophiolite and modern analogs[J]. Gondwana research, 2014, 26(1): 75-88. doi: 10.1016/j.gr.2013.03.004
[8] Findlay R H, Trinh P T. The Structural Setting of the Song Ma Region, Vietnam and the Indochina-South China Plate Boundary Problem[J]. Gondwana Research, 1997, 1(1): 11-33. doi: 10.1016/S1342-937X(05)70003-4
[9] Liu J, Tran M, Tang Y, et al. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications[J]. Gondwana Research, 2012, 22(2): 628-644. doi: 10.1016/j.gr.2011.10.011
[10] Zhang R Y, Lo C H, Chung S L, et al. Origin and tectonic implication of Ophiolite and Eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks[J]. Journal of Metamorphic Geology, 2013, 31: 49-62. doi: 10.1111/jmg.12012
[11] 锺大赉, 吴根耀, 季建清, 等. 滇东南发现蛇绿岩[J]. 科学通报, 1998, (13): 1365-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199813003.htm
[12] Genyao W, Dalai Z, Qi Z, et al. Babu-Phu Ngu Ophiolites: A Geological Record of Paleotethyan Ocean Bordering China and Vietnam[J]. Gondwana Research, 1999, 2(4): 554-557. doi: 10.1016/S1342-937X(05)70193-3
[13] 王忠诚, 吴浩若, 邝国敦. 桂西晚古生代海相玄武岩的特征及其形成环境[J]. 岩石学报, 1997, (2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB702.014.htm
[14] Guo F, Fan W, Wang Y, et al. Upper Paleozoic Basalts in the Southern Yangtze Block: Geochemical and Sr-Nd Isotopic Evidence for Asthenosphere-Lithosphere Interaction and Opening of the Paleo-Tethyan Ocean[J]. International Geology Review, 2004, 46(4): 332-346. doi: 10.2747/0020-6814.46.4.332
[15] 董云鹏, 朱炳泉. 滇东南建水岛弧型枕状熔岩及其对华南古特提斯的制约[J]. 科学通报, 1999, (21): 2323-2328. doi: 10.3321/j.issn:0023-074X.1999.21.018
[16] 吴根耀, 吴浩若, 钟大赉, 等. 滇桂交界处古特提斯的洋岛和岛弧火山岩[J]. 现代地质, 2000, (4): 393-400. doi: 10.3969/j.issn.1000-8527.2000.04.002
[17] 吴根耀, 季建清, 何顺东, 等. 广西凭祥地区早二叠世的岩浆弧及其构造意义[J]. 矿物岩石, 2002, (3): 61-65. doi: 10.3969/j.issn.1001-6872.2002.03.014
[18] 吴浩若. 晚古生代-三叠纪南盘江海的构造古地理问题[J]. 古地理学报, 2003, 5(1): 63-76. doi: 10.3969/j.issn.1671-1505.2003.01.006
[19] Lepvrier C, Faure M, Van V N, et al. North-directed Triassic nappes in Northeastern Vietnam(East Bac Bo)[J]. Journal of Asian Earth Sciences, 2011, 41(1): 56-68. doi: 10.1016/j.jseaes.2011.01.002
[20] 张斌辉, 丁俊, 张林奎, 等. 滇东南八布蛇绿岩的SHRIMP锆石U-Pb年代学研究[J]. 地质学报, 2013, 87(10): 1498-1509. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310002.htm
[21] Liu H C, Peng T, Guo X. Geochronological and geochemical constraints on the coexistent N-MORB and SSZ-type ophiolites in Babu area(SW China)and tectonic implications[J]. Journal of the Geological Society, 2018, 175: 667-678. doi: 10.1144/jgs2017-121
[22] 黄虎, 杜远生, 黄志强, 等. 桂西晚古生代硅质岩地球化学特征及其对右江盆地构造演化的启示[J]. 中国科学: 地球科学, 2013, 43(02): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201302015.htm
[23] Halpin A J, Thanh T H, Chun-Kit L, et al. U-Pb zircon geochronology and geochemistry from NE Vietnam: A tectonically disputed territory between the Indochina and South China blocks[J]. Gondwana Research, 2016, 34: 254-273. doi: 10.1016/j.gr.2015.04.005
[24] Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19. doi: 10.1007/s00410-005-0030-y
[25] Huang H, Du Y, Yang J, et al. Origin of Permian basalts and clastic rocks in Napo, Southwest China: Implications for the erosion and eruption of the Emeishan large igneous province[J]. Lithos, 2014, 208/209: 324-338. doi: 10.1016/j.lithos.2014.09.022
[26] 陈雪峰, 刘希军, 许继峰, 等. 桂西那坡基性岩地球化学: 峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 2016, 40(3): 531-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201603010.htm
[27] 胡丽沙, 杜远生, 杨江海, 等. 广西那龙地区中三叠世火山岩地球化学特征及构造意义[J]. 地质论评, 2012, 58(3): 481-494. doi: 10.3969/j.issn.0371-5736.2012.03.009
[28] 江文, 向忠金, 夏文静, 等. 滇东南富宁地区基性侵入岩与峨眉山地幔柱存在成因关系吗?——来自1:5万洞波幅和皈朝幅地质填图的证据[J]. 岩石学报, 2017, 33(10): 3109-3122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710009.htm
[29] 皮桥辉, 胡瑞忠, 彭科强, 等. 云南富宁者桑金矿床与基性岩年代测定——兼论滇黔桂地区卡林型金矿成矿构造背景[J]. 岩石学报, 2016, 32(11): 3331-3342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611008.htm
[30] 夏磊, 闫全人, 向忠金, 等. 广西那坡盆地火山岩-碳酸盐岩混杂型滑塌堆积: 特殊的弧前域构造指相标志及其大地构造意义[J]. 岩石学报, 2018, 34(3): 685-700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803010.htm
[31] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171
[32] Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology, 2004, 205(1/2): 115-140. http://www.sciencedirect.com/science/article/pii/S0009254104000361
[33] Williams I S, Buick I S, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia[J]. Journal of Metamorphic Geology, 1996, 14(1): 29-47.
[34] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. http://www.sciencedirect.com/science/article/pii/0009254177900572
[35] Le Maitre R W, Bateman P, Dudek A, et al. A Classification and Glossary of Terms[M]. Blackwell, Oxford, 1989: 1-193.
[36] Sun S S, Mcdonough M F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42: 313-345.
[37] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1): 33-45.
[38] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.
[39] Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429.
[40] Falloon T J, Green D H, Hatton C J, et al. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kbar and application to basalt petrogenesis[J]. Journal of Petrology, 1988, 29(6): 1257-1282. http://dx.doi.org/10.1093/petrology/29.6.1257
[41] Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond[J]. Earth and Planetary Science Letters, 1993, 114(4): 477-489. http://www.sciencedirect.com/science/article/pii/0012821X9390077M
[42] Xiao L, Xu Y G, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 525-546.
[43] Hirose K. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology, 1997, 25(1): 42-44. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=25/1/42
[44] Wu F, Walker R J, Yang Y, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 5013-5034.
[45] Kepezhinskas P, Mcdermott F, Defant M J, et al. Trace element and Sr+Nd+Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis[J]. Geochimica et Cosmochimica acta, 1997, 61(3): 577-600. http://www.sciencedirect.com/science/article/pii/S0016703796003493
[46] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 2001, 192(3): 331-346. http://www.sciencedirect.com/science/article/pii/S0012821X01004538
[47] Hanyu T, Tatsumi Y, Nakai S, et al. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): 1-29. http://onlinelibrary.wiley.com/doi/10.1029/2005GC001220
[48] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites.London: John Wiley & Sons, 1982: 525-548.
[49] Xia L. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195-212. http://www.sciencedirect.com/science/article/pii/S0012825214001743
[50] Watkins R. Volcaniclastic and carbonate sedimentation in late Paleozoic island-arc deposits, Eastern Klamath Mountains, California[J]. Geology, 1985, 13: 709-713.
[51] Soja C. Island-arc carbonates: characterization and recognition in the ancient geologic record[J]. Earth-science reviews, 1996, 41(1/2): 31-65. http://www.sciencedirect.com/science/article/pii/0012825296000293
[52] Dorobek S. Carbonate-platform facies in volcanic-arc settings: Characteristics and controls on deposition and stratigraphic development[J]. The Geological Socienty of America Special Paper, 2007, 436: 1-36. http://www.researchgate.net/publication/284141450_Carbonate-platform_facies_in_volcanic-arc_settings_Characteristics_and_controls_on_deposition_and_stratigraphic_development
[53] Hoa T T, Izokh A E, Polyakov G V, et al. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume[J]. Russian Geology and Geophysics, 2008, 49(7): 480-491. http://www.sciencedirect.com/science/article/pii/S1068797108001107
[54] Qin X F, Wang Z Q, Zhang Y L, et al. Geochemistry of Permian mafic igneous rocks from the Napo-Qinzhou Tectonic Belt in Southwest Guangxi, Southwest China: Implications for Arc-back arc basin magmatic evolution[J]. Acta Geologica Sinica, 2012, 86(5): 1182-1199. http://www.cqvip.com/QK/86253X/201205/43766269.html
[55] 吴根耀, 马力, 钟大赉, 等. 滇桂交界区印支期增生弧型造山带: 兼论与造山作用耦合的盆地演化[J]. 石油实验地质, 2001(1): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200101001.htm
[56] 陈泽超, 林伟, Michel F, 等. 越南东北部早中生代构造事件的年代学约束[J]. 岩石学报, 2013, 29(5): 1825-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305027.htm
[57] 杜远生, 黄虎, 杨江海, 等. 晚古生代-中三叠世右江盆地的格局和转换[J]. 地质论评, 2013, 59(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201301002.htm
[58] 覃小锋, 王宗起, 张英利, 等. 桂西南早中生代酸性火山岩年代学和地球化学: 对钦-杭结合带西南段构造演化的约束[J]. 岩石学报, 2011, 27(3): 794-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103019.htm
[59] Condie K C. Plate tectonics and crustal evolution[M]. Pregrmon Press, Oxford, 1997.
[60] 云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990.
[61] 杨江海, 杜远生, 于鑫, 等. 滇东南八布早二叠世含火山岩屑砂岩指示古特提斯洋俯冲[J]. 地球科学, 2017, 42(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701002.htm
① Geology and Earth Resource of Viet Nam. Geological map of VietNam (1:3500000). Publishing House for Science and Tectnology, HaNoi, 2011.
② 中国地质调查局武汉地质调查中心. 1:1000000中南地质图. 2012.
③ 云南省地质局. 1:20万富宁幅地质图及区域地质调查报告. 1978.
④ 广西壮族自治区地质局. 1:20万百色幅, 德隆幅地质图及区域地质调查报告. 1976.