Early early-Cretaceous post-collisional tectonic setting of the southern segment of the Great Xing'an Range: Evidence from the Lanjiayingzi gabbro-diorite in Linxi area
-
摘要:
对大兴安岭南段林西县以北兰家营子辉长闪长岩开展了系统的岩石学、锆石年代学和地球化学分析,以揭示该岩体的成因,并探讨大兴安岭南段早白垩世大地构造背景。锆石U-Pb定年结果表明,该岩体的形成时代为145.6±0.6 Ma,为早白垩世早期侵入体。地球化学分析结果表明,该岩体SiO2含量为53.38%~54.45%,K2O含量为1.34%~1.43%,Na2O含量为3.85%~4.05%,铝饱和指数A/CNK值介于0.8~0.9之间,属于钙碱性偏铝质岩浆岩。岩石的MgO和TFe2O3含量分别为5.44%~5.73%和7.53%~8.33%,相应的Mg#值介于36.96~38.24之间,结合斜长石的环带和辉石的包橄结构,认为岩石是幔源原始岩浆经历分离结晶作用的产物。岩石相对富集Rb、Ba等大离子亲石元素,亏损Nb、Ta等高场强元素,锆石εHf(t)介于5.4~9.0之间,指示岩浆起源于亏损的受俯冲流体交代过的岩石圈地幔。兰家营子辉长闪长岩与林西地区同时代A型花岗岩构成双峰式岩浆岩组合,指示它们是伸展环境的产物。综合区域地质资料,认为大兴安岭南段早白垩世早期岩浆岩的形成与蒙古-鄂霍茨克洋闭合引起的碰撞后伸展背景有关。
Abstract:Based on the systematic petrology, zircon chronology and geochemistry analysis of the Lanjiayingzi gabiodiorite pluton in the north of Linxi County in southern Great Khingan Range, genesis of the pluton and the Early Cretaceous tectonic setting are discussed.Zircon U-Pb dating reveals that the pluton was formed in Early Cretaceous (145.6±0.6 Ma).Geochemistry of the pluton is characterized by 53.38%~54.45% of SiO2 contents, 1.34%~1.43% of K2O contents and 3.85%~4.05 % of Na2O contents, with 0.8~0.9 of A/CNK, which indicates that the pluton belongs to a calc-alkaline metaluminous magmatic rock.Its MgO and TFe2O3 contents vary from 5.44%~5.73% and 7.53%~8.33% respectively, with 36.96 to 38.24 of Mg# values.Combined with the girdle of plagioclase and the poikilitic texture of olivine in clinopyroxene, it is suggested that the pluton was the product of the fractional crystallization of mantle-derived primary magma.In addition, the pluton is relatively rich in LILEs such as Rb and Ba, and depletion in HFSEs such as Nb and Ta, with +5.4 to +9.0 of zircon εHf(t) values, which indicates that the pluton was derived from a depleted lithospheric mantle that experienced metasomatism from the subduction fluid.The Lanjiayingzi gabbrodiorite and coeval A-type granites in Linxi area constitute the bimodal magmatic assemblage, which suggests that they were formed in an extensional setting.Combined with regional geology, it is suggested that the formation of the Early Cretaceous magmatic rocks in southern Great Khingan Range has relation with the post-collision extensional setting resulting from closure of the Mongol-Okhotsk Ocean.
-
Key words:
- Southern Great Khingan Range /
- gabbrodiorite /
- Early Cretaceous /
- geochemistry /
- petrogenesis
-
图 2 林西地区地质图和采样位置②
Figure 2.
表 1 兰家营子地区辉长闪长岩LA-ICP-MS锆石U-Th-Pb分析数据
Table 1. U-Th-Pb age of LA-ICP-MS zircon from the Lanjiayingzi gabbrodiorite
点号 含量/10-6 232Th/238U 同位素比值 年龄/Ma Pb 232Th 238U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ DX03-1-01 39.1 1043 1370 0.76 0.0492 0.0017 0.1536 0.0051 0.0226 0.0002 154 77.8 145 4.5 144 1.4 DX03-1-02 34.7 808 1264 0.64 0.0472 0.0017 0.1498 0.0055 0.0228 0.0002 61.2 81.5 142 4.8 145 1.6 DX03-1-03 40.4 1088 1414 0.77 0.0491 0.0016 0.1561 0.0050 0.0229 0.0002 150 80.5 147 4.4 146 1.4 DX03-1-04 41.2 1040 1471 0.71 0.0492 0.0016 0.1555 0.0052 0.0226 0.0002 167 77.8 147 4.6 144 1.4 DX03-1-05 72.6 2424 2393 1.01 0.0485 0.0014 0.1545 0.0042 0.0228 0.0002 124 66.7 146 3.7 145 1.2 DX03-1-06 53.6 1870 1729 1.08 0.0488 0.0016 0.1553 0.0050 0.0228 0.0002 139 77.8 147 4.4 145 1.4 DX03-1-07 38.5 920 1372 0.67 0.0477 0.0017 0.1536 0.0056 0.0230 0.0002 83.4 85.2 145 4.9 146 1.6 DX03-1-08 21.32 472 788 0.60 0.0456 0.0019 0.1460 0.0060 0.0230 0.0003 138 5.3 146 1.6 DX03-1-09 27.90 587 999 0.59 0.0495 0.0018 0.1592 0.0054 0.0232 0.0002 172 83.3 150 4.7 148 1.5 DX03-1-10 58.1 1710 1993 0.86 0.0471 0.0014 0.1502 0.0044 0.0228 0.0002 57.5 66.7 142 3.9 146 1.3 DX03-1-11 38.6 1139 1271 0.90 0.0480 0.0017 0.1559 0.0051 0.0233 0.0002 98.2 88.0 147 4.5 148 1.5 DX03-1-12 49.4 1292 1772 0.73 0.0493 0.0016 0.1542 0.0051 0.0224 0.0002 161 77.8 146 4.4 143 1.4 DX03-1-13 213 10678 5844 1.83 0.0494 0.0012 0.1583 0.0038 0.0229 0.0002 169 62.0 149 3.4 146 1.3 DX03-1-14 144.0 5856 4321 1.36 0.0491 0.0013 0.1568 0.0039 0.0229 0.0002 154 56.5 148 3.4 146 1.3 DX03-1-15 16.84 429 578 0.74 0.0491 0.0021 0.1567 0.0064 0.0230 0.0003 150 100 148 5.7 146 1.7 DX03-1-16 29.5 798 1026 0.78 0.0492 0.0020 0.1548 0.0062 0.0225 0.0002 167 99.1 146 5.5 144 1.5 DX03-1-17 18.31 551 638 0.86 0.0493 0.0023 0.1563 0.0075 0.0226 0.0003 165 139 147 6.6 144 1.6 DX03-1-18 30.5 889 1037 0.86 0.0496 0.0020 0.1566 0.0061 0.0228 0.0003 176 125.0 148 5.4 146 1.7 DX03-1-19 25.93 538 955 0.56 0.0485 0.0021 0.1562 0.0067 0.0231 0.0003 120 100 147 5.9 147 1.7 DX03-1-20 35.5 779 1276 0.61 0.0476 0.0017 0.1518 0.0055 0.0229 0.0002 79.7 85.2 143 4.9 146 1.6 DX03-1-21 40.3 1100 1395 0.79 0.0486 0.0016 0.1538 0.0049 0.0228 0.0002 132 77.8 145 4.3 145 1.5 DX03-1-22 23.04 486 826 0.59 0.0481 0.0019 0.1546 0.0061 0.0230 0.0002 102 92.6 146 5.4 147 1.6 DX03-1-23 59.2 2051 1903 1.08 0.0485 0.0016 0.1563 0.0048 0.0232 0.0003 124 71.3 147 4.2 148 1.7 DX03-1-24 62.4 2556 1915 1.34 0.0492 0.0014 0.1548 0.0044 0.0226 0.0002 167 73.1 146 3.9 144 1.4 表 2 兰家营子辉长闪长岩主量、微量和稀土元素含量
Table 2. Contents of major and trace elements, as well as REE of the Lanjiayingzi gabbrodiorite
样品号 DX03-1 DX03-2 DX03-3 DX03-4 DX03-5 样品号 DX03-1 DX03-2 DX03-3 DX03-4 DX03-5 SiO2 54.09 53.7 53.38 54.45 53.45 Cr 84.4 94.3 109 83.1 84.2 TiO2 0.99 1.05 1.23 1.15 1.16 Hf 2.82 2.88 2.94 2.71 2.81 Al2O3 18.49 18.18 17.95 18.61 18.23 Cs 3.09 3.23 2.8 2.19 2.22 TFe2O3 7.95 8.21 8.33 7.53 8.13 Sc 13.6 14.6 15.9 13.8 13.8 MnO 0.11 0.12 0.12 0.12 0.12 Ta 0.3 0.32 0.37 0.34 0.33 MgO 5.54 5.7 5.73 5.44 5.56 Co 29.4 31.4 31.5 27.2 31.3 CaO 7.63 7.66 7.81 7.59 7.73 U 0.86 0.96 0.83 1 0.89 Na2O 3.97 3.92 3.85 4.05 3.9 Sn 1.17 1.11 1.18 1.1 1.04 K2O 1.43 1.34 1.35 1.41 1.35 La 32.9 18.7 102 17 14.8 P2O5 0.22 0.24 0.23 0.26 0.29 Ce 54.7 37.1 140 36 33.6 烧失量 0.08 0.21 0.05 0.16 0.31 Pr 5.88 4.52 12.5 4.53 4.44 总计 100.58 100.39 100.1 100.83 100.29 Nd 22.5 18.9 41 19.2 19.2 A/CNK 0.84 0.83 0.82 0.85 0.83 Sm 4.08 3.89 5.36 4 4.08 Ba 461 452 467 455 444 Eu 1.51 1.48 1.72 1.53 1.47 Rb 27.8 27.7 26.9 28.5 25.9 Gd 3.54 3.43 4.06 3.66 3.68 Sr 818 828 842 839 820 Tb 0.49 0.51 0.55 0.52 0.55 Y 14.8 15.9 16.1 15.7 16.1 Dy 2.8 2.93 3.2 3.09 3.17 Zr 118 115 114 106 111 Ho 0.53 0.55 0.58 0.57 0.57 Nb 4.41 4.71 5.6 5.03 5.02 Er 1.39 1.47 1.45 1.45 1.46 Th 2.57 2.69 4.17 2.78 2.38 Tm 0.21 0.21 0.22 0.22 0.22 Pb 6.62 6.45 6.66 6.84 6.75 Yb 1.19 1.37 1.32 1.32 1.32 Ga 20.6 20.4 21 20.8 20.5 Lu 0.17 0.19 0.2 0.2 0.2 Zn 76.5 83.5 85.2 75.7 84 Mg# 37.39 37.31 37.09 38.24 36.96 Cu 11.8 9.51 10.7 9.93 13.9 δEu 1.21 1.24 1.13 1.22 1.16 Ni 30.2 32.1 32.6 25.2 31.2 (La/Yb)N 18.64 9.20 52.10 8.68 7.56 V 140 147 169 157 150 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 兰家营子辉长闪长岩锆石Lu-Hf同位素分析结果
Table 3. Zircon Lu-Hf isotopic data of the Lanjiayingzi gabbrodiorite
测点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1/Ma fLu/Hf DX03-1-01 144 0.025142 0.000640 0.282888 0.000019 4.1 7.2 0.7 512 -0.98 DX03-1-02 145 0.021711 0.000557 0.282890 0.000016 4.2 7.3 0.6 508 -0.98 DX03-1-03 146 0.017745 0.000402 0.282911 0.000016 4.9 8.1 0.6 476 -0.99 DX03-1-04 144 0.036712 0.000868 0.282895 0.000019 4.3 7.4 0.7 505 -0.97 DX03-1-05 145 0.066984 0.001591 0.282905 0.000020 4.7 7.7 0.7 500 -0.95 DX03-1-07 146 0.022079 0.000523 0.282887 0.000017 4.1 7.2 0.6 512 -0.98 DX03-1-08 146 0.020129 0.000501 0.282886 0.000015 4.0 7.2 0.5 512 -0.98 DX03-1-09 148 0.021605 0.000490 0.282877 0.000017 3.7 6.9 0.6 525 -0.99 DX03-1-10 146 0.031634 0.000729 0.282886 0.000021 4.0 7.2 0.8 515 -0.98 DX03-1-11 148 0.053899 0.001231 0.282904 0.000019 4.7 7.8 0.7 497 -0.96 DX03-1-12 143 0.032645 0.000768 0.282902 0.000017 4.6 7.7 0.6 494 -0.98 DX03-1-13 146 0.027665 0.000595 0.282911 0.000019 4.9 8.1 0.7 479 -0.98 DX03-1-14 146 0.053093 0.001158 0.282896 0.000018 4.4 7.5 0.6 507 -0.97 DX03-1-15 146 0.033945 0.000623 0.282898 0.000024 4.5 7.6 0.9 497 -0.98 DX03-1-16 144 0.042239 0.000877 0.282923 0.000019 5.3 8.4 0.7 466 -0.97 DX03-1-17 144 0.031130 0.000635 0.282908 0.000026 4.8 7.9 0.9 483 -0.98 DX03-1-18 146 0.045799 0.000869 0.282938 0.000025 5.9 9.0 0.9 443 -0.97 DX03-1-19 147 0.015344 0.000297 0.282887 0.000021 4.1 7.3 0.7 509 -0.99 DX03-1-20 146 0.019434 0.000419 0.282877 0.000020 3.7 6.9 0.7 524 -0.99 DX03-1-22 147 0.040944 0.000848 0.282900 0.000021 4.5 7.7 0.8 497 -0.97 DX03-1-23 148 0.037534 0.000781 0.282914 0.000026 5.0 8.2 0.9 477 -0.98 DX03-1-24 144 0.056441 0.001153 0.282838 0.000029 2.3 5.4 1.0 590 -0.97 -
[1] Windley B F, Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Res. , 2018, 61: 73-87. doi: 10.1016/j.gr.2018.05.003
[2] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014
[3] 李鹏川, 李世超, 刘正宏, 等. 内蒙古林西地区满克头鄂博组火山岩形成时代及构造环境[J]. 世界地质, 2016, 35(1): 77-88. doi: 10.3969/j.issn.1004-5589.2016.01.008
[4] 王建国, 和钟铧, 许文良. 大兴安岭南部钠闪石流纹岩的岩石成因: 年代学和地球化学证据[J]. 岩石学报, 2013, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm
[5] 覃锋, 刘建明, 曾庆栋, 等. 内蒙古克什克腾旗小东沟斑岩型钼矿床成岩成矿机制探讨[J]. 岩石学报, 2009, 25(12): 3357-3368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912024.htm
[6] 刘翼飞. 内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究[D]. 中国地质科学院硕士学位论文, 2009.
[7] 杨奇荻, 郭磊, 王涛, 等. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 2014, 30(7): 1961-1981. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407011.htm
[8] 刘伟, 潘小菲, 谢烈文, 等. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式[J]. 岩石学报, 2007, 23(2): 441-460. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702023.htm
[9] 江思宏, 梁清玲, 刘翼飞, 等. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J]. 岩石学报, 2012, 28(2): 495-513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202013.htm
[10] 王迪, 赵国春, 苏尚国, 等. 大兴安岭南段晚中生代侵入岩时空分布及主脊与东坡岩体特征对比[J]. 现代地质, 2020, 34(3): 466-482. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202003005.htm
[11] 李雪菲, 赵庆英, 王晓志, 等. 内蒙古扎鲁特地区毛伊勒吐岩体形成时代及构造环境[J]. 地质与资源, 2012, 21(2): 194-199. doi: 10.3969/j.issn.1671-1947.2012.02.003
[12] Li S, Wilde A, Wang T, et al. Incremental growth and origin of the Cretaceous Renjiayingzi pluton, southern Inner Mongolia, China: Evidence from structure, geochemistry and geochronology[J]. Journal of Asian Earth Sciences, 2013, 75: 226-242. doi: 10.1016/j.jseaes.2013.07.005
[13] 李锦轶, 刘建峰, 曲军峰, 等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 2019, 35(10): 2989-3016. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910005.htm
[14] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
[15] 刘永江. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 4: 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
[16] 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810002.htm
[17] 祝洪臣, 张烔飞, 权恒. 大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境[J]. 吉林大学学报, 2005, 35(4): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200504004.htm
[18] 潘小菲, 郭利军, 王硕, 等. 内蒙古维拉斯托铜锌矿床的白云母39Ar/40Ar年龄探讨[J]. 岩石矿物学杂志, 2009, 28(5): 473-479. doi: 10.3969/j.issn.1000-6524.2009.05.007
[19] 邵积东, 王守光, 赵文涛, 等. 大兴安岭地区成矿地质特征及找矿前景分析[J]. 地质与资源, 2007, (4): 252-262. doi: 10.3969/j.issn.1671-1947.2007.04.002
[20] 曾庆栋, 刘建明, 禇少雄, 等. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1100-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604010.htm
[21] Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102: 138-157. doi: 10.1016/j.lithos.2007.08.011
[22] 赵辉, 李舢, 王涛, 等. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代, 成因及其构造意义[J]. 地质通报, 2015, 34(12): 2203-2218. doi: 10.3969/j.issn.1671-2552.2015.12.007 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20151207&flag=1
[23] Zeng Q D, Liu J M, Chu S X, et al. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristics and tectonic setting[J]. International geology review, 2012, 54(16): 1843-1869. doi: 10.1080/00206814.2012.677498
[24] 葛文春, 林强, 孙德有, 等. 大兴安岭中生代玄武岩的地球化学特征: 壳幔相互作用的证据[J]. 岩石学报, 1999, 15(3): 396-407. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903007.htm
[25] 林强, 葛文春, 孙德有, 等. 东北地区中生代火山岩的大地构造意义[J]. 地质科学, 1998, 33(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm
[26] 姚百赫, 来林, 徐文坦, 等. 内蒙古敖仑敖包早白垩世A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质学刊, 2018, 42(2): 264-276. doi: 10.3969/j.issn.1674-3636.2018.02.012
[27] 吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm
[28] 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 2000, 4(1): 313-318. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199904000.htm
[29] Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119. http://www.researchgate.net/publication/222992706_nature_and_significance_of_the_early_cretaceous_giant_igneous_event_in_eastern_china
[30] 程银行, 刘永顺, 滕学建, 等. 内蒙古莫合尔图中-晚侏罗世火山岩年代学、地球化学研究及其意义[J]. 地质学报, 2013, 87(7): 943-956. doi: 10.3969/j.issn.0001-5717.2013.07.004
[31] 陈志广, 张连昌, 周新华, 等. 满洲里新右旗火山岩剖面年代学和地球化学特征[J]. 岩石学报, 2006, 22(12): 2971-2986. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612013.htm
[32] 郝彬, 宋江, 李朝柱, 等. 赤峰地区晚中生代火山岩锆石U-Pb年代学及地球化学特征[J]. 大地构造与成矿学, 2016, 40(6): 1261-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201606013.htm
[33] Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range(NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1/2): 179-198.
[34] 张鹏, 和钟铧, 隋振民, 等. 内蒙古索伦地区花岗斑岩岩石成因及构造背景[J]. 世界地质, 2019, 38(1): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201901005.htm
[35] 王春林, 孟明亮, 鲁孝军, 等. 内蒙古多伦晚中生代中酸性火山岩岩石地球化学特征及构造环境分析[J]. 地质与勘探, 2018, 5(10): 988-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201805010.htm
[36] 郭锋, 范蔚茗, 王岳军, 等. 大兴安岭南段晚中生代双峰式火山作用[J]. 岩石学报, 2001, 17(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm
[37] 葛文春, 林强, 孙德有, 等. 大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学, 2000, 25(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm
[38] 葛文春, 吴福元, 周长勇, 等. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 2005, 21(3): 749-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503016.htm
[39] 李益龙. 华北-西伯利亚板块对接带早白垩纪的裂解: 来自西拉木伦断裂带中性岩墙群的锆石U-Pb年龄及地球化学数据[J]. 中国地质大学学报, 2010, 35(6): 921-932. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006005.htm
[40] 李舢. 北山-内蒙古地区三叠纪花岗岩及其构造意义[D]. 中国地质科学院博士学位论文, 2013.
[41] 王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008, 2: 119-136. doi: 10.3969/j.issn.0253-4959.2008.02.001
[42] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic Convergent Orogenic Belts In Western Inner Mongolia(China): Framework, Kinematics, Geochronology And Implications For Tectonic Evolution Of The Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015
[43] Jian P, Liu D, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3/4): 233-259. http://www.sciencedirect.com/science/article/pii/S0024493707001508
[44] Li S, Wilde S A, Wang T, et al. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2016, 29(1): 168-180. doi: 10.1016/j.gr.2014.11.006
[45] Jian P, Liu D Y, Kröner A, et al. Evolution of a Permian intraoceanic arctrench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118: 169-190. doi: 10.1016/j.lithos.2010.04.014
[46] Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 288-308. http://petrology.oxfordjournals.org/external-ref?access_num=10.1029/2002TC001484&link_type=DOI
[47] Zhang W, Wu T, Zheng R, et al. Post-collisional Southeastern Beishan granites: Geochemistry, geochronology, Sr-Nd-Hf isotopes and their implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 2012, 58: 51-63. doi: 10.1016/j.jseaes.2012.07.004
[48] 王瑜, 李春风, 陈洪洲. 中国东北地区新生代火山活动的构造背景[J]. 地质论评, 1999, 45(增): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1025.htm
[49] 李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, (3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
[50] 刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm
[51] 刘建峰, 迟效国, 赵芝, 等. 内蒙古巴林右旗建设屯埃达克岩锆石U-Pb年龄及成因讨论[J]. 岩石学报, 2013, 29(3): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303008.htm
[52] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://www.sciencedirect.com/science/article/pii/s0009254108003501
[53] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
[54] Ludwing K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Genter, Berkeley, California, 2003.
[55] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, (10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
[56] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[57] Koschek G. Origin and significance of the SEM cathodoluminescence from ziron[J]. Journal of Microscopy, 1993, 171(3): 223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x
[58] Belousova E, Griffin W, O'Reilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[59] Yuan L L, Zhang X H, Yang Z L. Early Cretaceous gabbro-granite complex from central Inner Mongolia: Insights into initial rifting and crust-mantle interaction in the northern China-Mongolia basin-range tract[J]. Lithos, 2019, 324/325: 859-876. doi: 10.1016/j.lithos.2018.12.010
[60] 刘峰岩, 和钟铧, 高龙飞, 等. 内蒙古索伦地区黄土达坂花岗岩形成时代、地球化学特征及构造背景[J]. 世界地质, 2018, 37(3): 761-776. doi: 10.3969/j.issn.1004-5589.2018.03.009
[61] 龙舟, 来林, 张学斌, 等. 内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质与勘探, 2017, 53(6): 1115-1128. doi: 10.3969/j.issn.0495-5331.2017.06.007
[62] Middlemost E A K. Naming materials in the magma/igneous rock System[J]. Earth Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9
[63] Irivin T N, Baragar W R A. A guide to the chemical classification of the common volacnic rock[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gscjes&resid=8/5/523
[64] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
[65] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984: 63-114.
[66] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[67] Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352.
[68] 豆孝芳, 陈鑫, 郑有业, 等. 西藏班戈寒武纪辉长闪长岩体的发现及其构造意义[J]. 地球科学, 2020, 45(6): 2091-2102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006022.htm
[69] 董春艳, 王晨, 颉颃强, 等. 冀东新太古代晚期界岭口闪长岩成因: U-Pb-Nd-Hf-O同位素研究[J]. 岩石学报, 2018, 34(9): 2793-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809018.htm
[70] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
[71] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. http://www.sciencedirect.com/science/article/pii/0009254177900572
[72] Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry, 2003, 3: 1-64.
[73] Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1/2): 27-47. http://www.sciencedirect.com/science/article/pii/S030192680600218X
[74] 刘建峰. 内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D]. 吉林大学博士学位论文, 2009.
[75] 刘建峰, 李锦轶, 迟效国, 等. 内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境[J]. 地质学报, 2014, 88(9): 1677-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409005.htm
[76] 鲍庆中, 张长捷, 吴之理, 等. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报(地球科学版), 2007, 37(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701002.htm
[77] 鲍庆中, 张长捷, 吴之理, 等. 内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义[J]. 中国地质, 2007, 34(5): 790-798. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200705004.htm
[78] 陈斌, 赵国春. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 2001, 47(4): 361-367. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm
[79] Daly R A. The geology of Ascension Island[J]. Proc. Amer. A-cad. Arts Sci. , 1925, 60: 180.
[80] 王焰, 钱青, 刘良, 等. 不同构造环境中双峰式火山岩的主要特征[J]. 岩石学报, 2000, (2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm
[81] 邓晋福, 肖庆辉, 苏尚国, 等. 火成岩组合与构造环境: 讨论[J]. 高校地质学报, 2007, (3): 392-402. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703004.htm
[82] Ringwood A E. Slab-mantle interactions: Petrogenesis of intraplate magmas and structure of the upper mantle[J]. Chemical Geology, 1990, 82: 187-207. http://www.onacademic.com/detail/journal_1000035297533810_2c0a.html
[83] Sorokin A A, Sorokin A P, Ponomarchuk V A, et al. The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan-Ogodzha volcanoplutonic belt(Amur region)[J]. Russian Geology and Geophysics, 2010, 51(4): 369-379. http://www.sciencedirect.com/science/article/pii/S1068797110000350
[84] 李锦轶. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 1998, 44(4): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htm
[85] 李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
[86] 李锦轶, 曲军峰, 张进, 等. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展[J]. 地质通报, 2013, 32(2/3): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1000.htm
[87] 黄始琪, 董树文, 胡健民, 等. 蒙古-鄂霍次克构造带的形成与演化[J]. 地质学报, 2016, 90(9): 2192-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201609011.htm
① 中国地质调查局发展研究中心, 中国石油化工股份有限公司石油勘探开发研究院等. 中华人民共和国1:250万地质图. 2002.
② 内蒙古自治区地质调查局. 林西县刘家营子地区1:20万地质图. 1968.