-
摘要:
Ahangaran铅(铜)矿床位于伊朗地块(北部)与阿拉伯板块(南部)碰撞形成的扎格罗斯造山带的Sanandaj-Sirjan带内,该碰撞发生在新生代,赋矿围岩为下白垩统白云质灰岩。矿体多呈顺层的透镜状和穿层的脉状产出,成矿前沉淀细粒石英,成矿期出现白云石、方解石、重晶石、粗粒石英、方铅矿、黄铜矿、黄铁矿、黝铜矿。流体包裹体研究显示,成矿流体为Cl--Na+-Ca2+-Mg2+体系,均一温度介于108~210℃之间,盐度介于7%~29% NaCl eq之间,结合脉石矿物和包裹体的碳-氢-氧同位素特征,显示成矿流体主要来自盆地卤水,但不排除有岩浆流体的贡献,在成矿过程中成矿流体与碳酸盐围岩发生相互作用,使围岩发生溶解。重晶石δ34S值介于18.7‰~22.7‰之间,硫化物中δ34S值介于-3.1‰~9.7‰之间,推测还原硫可能主要来自硫酸盐的生物还原(BSR),也不排除有机质热化学还原(TSR)作用的贡献。方铅矿206Pb/204Pb值介于18.4083~18.4054之间,207Pb/204Pb值介于15.6512~15.6548之间,208Pb/204Pb值介于38.5628~38.5515之间,与区域铅锌成矿带内其他赋存在碳酸盐岩中铅锌矿床的铅同位素特征相似,说明这些矿床中金属来源均与经历了"造山"作用的上地壳岩石有关。尽管该矿床矿化和成矿流体特征与密西西比河谷型(MVT)矿床相似,但其富石英和含铜的特征与和岩浆有关的碳酸盐岩交代型矿床(CRD)更接近,建议将该矿床归为后一类。
Abstract:The Ahangaran Pb(Cu) deposit is located in the Sanandaj-Sirjan metamorphic zone of the Zagros orogenic belt, a Cenozoic continental collisional zone between Arabian(south) and Iran(north) blocks. The deposit is hosted in Lower Cretaceous dolomitic limestone and has conformable and lenticular orebodies and bed-crosscutting ore veins. Pre-ore stage of minerals are fine-grained quartz, and ore stage of minerals are composed of dolomite, barite, calcite, coarse-grained quartz, galena, chalcopyrite, pyrite, and tetrahedrite. The study of the fluid inclusions shows that the ore fluids are a Cl--Na+-Ca2+-Mg2+ system, with homogenization temperatures from 108℃ to 210℃ and the salinities from 7%NaCl eq to 29%NaCl eq. Combined with data of C-H-O isotopes from ore stage hydrothermal gangue minerals and associated fluid inclusions, the authors hold that the ore fluids were mainly derived from basinal brine, with or without contribution from magmatic fluids. The mineralization process led to the dissolution of the host carbonate. The δ34S values of barite range from 18.7‰ to 22.7‰, and sulfides range from -3.1‰ to 9.7‰, suggesting that the reduced sulfur was probably the result of biological sulfate reduction(BSR). But this does not exclude the probable contribution of reduced sulfur from thermochemical sulfate reduction(TSR). The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of galena are 18.4083~18.454, 15.6512~15.6548, and 38.5628~38.5515, respectively, which are similar to those of the other Pb-Zn deposits in this region, i.e., the Malayer-Esfahan carbonated-hosted Pb-Zn metallogenic belt. It is suggested that their metals were derived from the same upper crustal rocks. Although the Ahangaran deposit shares some similarities with Mississippi Valley-type(MVT) deposits, the enrichment of ore stage quartz and copper sulfides suggests that the deposit may be classified as a magmatic-related carbonate-replacement-type deposit.
-
Key words:
- geology /
- mineralization /
- genesis /
- Ahangaran /
- carbonate replacement-type
-
-
图 1 伊朗的主要构造组成单元及Ahangaran矿床位置(底图据参考文献[7])
Figure 1.
图 2 Sanandaj-Sirjan变质带中部地区断层样式及马拉耶尔-伊斯法罕成矿带主要铅锌矿床分布(据参考文献[14]修改)
Figure 2.
图 3 Ahangaran矿区地质简图(据参考文献[7]修改)
Figure 3.
图 4 Ahangaran铅(铜)矿床实测地质剖面(位置见图 3)
Figure 4.
图 11 Ahangaran铅(铜)矿床碳酸盐中δ18O-δ13C图解(底图据参考文献[32])
Figure 11.
表 1 Ahangaran铅(铜)矿床热液石英中流体包裹体液相成分
Table 1. Solution compositions of fluid inclusions from hydrothermal quartz in the Ahangaran Pb (Cu) deposit
样品号 Cl- SO42- Na+ K+ Mg2+ Ca2+ HGL12-11-2 23.1 0.75 10.1 0.3 13.8 20.8 HGL12-11-12 6.42 6 2.82 - 8.4 16 HGL12-11-1b 49.8 1.67 26.8 1.31 0.246 2.51 表 2 Ahangaran铅(铜)矿床热液石英流体包裹体显微测温结果
Table 2. Homogenization temperature and salinity data of fluid inclusions from hydrothermal quartz in the Ahangaran Pb (Cu) deposit
样品号 包裹体类型 均一温度/℃ 冰点/℃ 盐度/%NaCl eq HGL12-11-6 气液二相(n=7) 142.3~181.4 -12.7~-29.8 16.62~28.53 HGL12-1-3 气液二相(n=16) 108.1~209.7 -7.8~-28.8 11.46~27.91 表 3 Ahangaran铅(铜)矿床与Emarat铅锌矿床中氢、氧同位素组成
Table 3. Hydrogen-oxygen isotope compositions in quartz from the Ahangaran Pb (Cu) deposit and the Emarat Pb-Zn deposit
‰ 样品原号 矿物 δDV-SMOW δ18OV-SMOW 均一温度T/℃ δ18OH2O 数据来源 HGL12-11-1b 石英 -77.7 18.3 164.49 3.73 本文 HGL12-11-7 石英 -68.7 17.2 159.04 2.63 EM12-1-11 石英 -76.2 20.1 T1=147;
T2=201.74.34~8.52 [24] EM12-1-14 石英 -70.5 20.7 4.94~9.12 EM12-2-4 石英 -57.5 19.7 3.94~8.12 EM12-4-3 石英 -69.1 18.8 3.04~7.22 EM12-18-2 石英 -65.9 19.7 3.94~8.12 EM12-19-2 石英 -63.4 18.6 2.84~7.02 EM12-19-4 石英 -64.1 18.9 3.14~7.32 注:T1和T2分别代表所有包裹体测得的均一温度的2个峰值波段范围内的平均值 表 4 Ahangaran铅(铜)矿床方解石碳、氧同位素组成
Table 4. C and O isotopic compositions of calcite from the Ahangaran Pb (Cu) deposit
‰ 样品号 样品描述 δ13CV-PDB δ18OV-SMOW HGL12-1-3 方解石 -3.0 20.1 HGL12-11-2 方解石 -1.7 17.8 HGL12-11-4 方解石 -2.7 19.7 HGL12-11-9 方解石 -1.4 19.6 表 5 Ahangaran铅(铜)矿床硫同位素测试结果
Table 5. Sulfur isotopic compositions of sulfides in the Ahangaran Pb (Cu) deposit
样品号 矿物 δ34S/‰ HGL12-1-3(1) 重晶石 22.2 HGL12-1-3 重晶石 22.2 HGL12-11-3 重晶石 22.7 HGL12-11-5 重晶石 18.7 HGL12-11-8 方铅矿 1.3 HGL12-11-9 方铅矿 -3.1 HGL12-11-10 黄铁矿 8.2 HGL12-11-10 方铅矿 9.7 HGL12-11-12 黄铁矿 5.6 HGL12-11-12 方铅矿 5.9 表 6 Ahangaran铅(铜)矿床和区域上相邻其他矿床铅同位素测试结果
Table 6. Lead isotopic compositions of galenain the Ahangaran Pb (Cu) deposit
样品编号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 数据来源 HGL12-1-3 方铅矿 18.4054 15.6512 38.5515 本文 HGL12-11-8 方铅矿 18.4069 15.6526 38.5584 HGL12-11-9 方铅矿 18.4067 15.6526 38.5533 HGL12-11-10 方铅矿 18.4061 15.6517 38.5517 HGL12-11-12 方铅矿 18.4083 15.6548 38.5628 IK12-4-6 方铅矿 18.4603 15.6502 38.6452 IK12-7-9 方铅矿 18.4594 15.6491 38.6434 IK12-7-10 方铅矿 18.4466 15.6278 38.5578 IK12-7-12 方铅矿 18.444 15.6271 38.5551 IK12-7-13 方铅矿 18.4497 15.6287 38.5624 IK12-7-14 方铅矿 18.4686 15.6526 38.6596 IK12-9-3 方铅矿 18.4514 15.6561 38.6337 IK12-10-5 方铅矿 18.4513 15.6526 38.6351 TI12-2-1 方铅矿 18.3966 15.6474 38.575 TI12-2-5 方铅矿 18.398 15.6494 38.5803 TI12-5-2 方铅矿 18.4025 15.6489 38.5836 TI12-8-3 方铅矿 18.3956 15.6469 38.5722 TI12-16-1 方铅矿 18.395 15.6476 38.5691 TI12-17-2 方铅矿 18.3958 15.6476 38.5727 EM12-1-11 方铅矿 18.4145 15.6479 38.5775 [24] EM12-1-14 方铅矿 18.4112 15.649 38.5642 EM12-4-3 方铅矿 18.4157 15.6491 38.5808 EM12-18-3 方铅矿 18.4129 15.6472 38.5709 EM12-18-7 方铅矿 18.4129 15.6497 38.5753 注:IK为Irankuh铅锌矿床;TI为Tiran铅锌矿床;EM为Emarat矿 -
[1] 张洪瑞, 侯增谦, 杨志明.特提斯成矿域主要金属矿床类型与成矿过程[J].矿床地质, 2010, 29(1):113-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201001011
[2] Reynolds N A, Duncan L.Tethyan Zinc-Lead Metallogeny in Europe, North Africa, and Asia[J].Society of Economic Geologists, 2010, 15:339-365. http://www.researchgate.net/publication/313051590_Tethyan_zinc-lead_metallogeny_in_Europe_North_Africa_and_Asia
[3] Hou Z, Zhang H.Geodynamaics and metallogeny of the eastern Tethyan metallogenic domain[J].Ore Geology Reviews, 2015, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026
[4] Alavi M.Tectonics of Zagros Orogenic belt of Iran, new data and interpretation[J].Tectonophysics, 1994, 229:211-238. doi: 10.1016/0040-1951(94)90030-2
[5] Stocklin J.Structural history and tectonics of Iran:A review[J].AAPG.Bull, 1968, 52:1229-1258. http://www.researchgate.net/publication/311570221_Structural_history_and_tectonics_of_Iran
[6] Ghazban F, McNutt R H, Schwarcz H P.Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh District, Esfahan area, west-central Iran[J].Economic Geology, 1994, 89(6):1262-1278. doi: 10.2113/gsecongeo.89.6.1262
[7] Zamanian H.Mineralogy, paragenesis and genesis of Ahangaran Ag-Pb deposit, Malayer[D].Unpublished MSc.Thesis, Tehran Tarbiat Moallem University, 1993: 280(In Persian).
[8] Ehya F, Lotfi M, Rasa I.Emarat carbonate-hosted Zn-Pb deposit, Markazi Province, Iran:A geological, mineralogical and isotopic(S, Pb) study[J].Journal of Asian Sciences, 2010, 37(2):186-194. http://www.sciencedirect.com/science/article/pii/S1367912009001989
[9] Momenzadeh M, Shafighi S, Rastad E, et al.The Ahangaran Lead-Silver Deposit, SE-Malayer, West Central Iran[J].Mineral Deposita(Berl.), 1979, 14:323-341. http://www.onacademic.com/detail/journal_1000034292721610_5a34.html
[10] Nadimi A, Konon A.Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran[J].Journal of Structural Geology, 2012, 40:2-16. doi: 10.1016/j.jsg.2012.04.007
[11] Morley C K, Kongwung B, Julapour A, et al.Structural development of a major late Cenozoic basin and transpressional belt in central Iran:The Central Basin in the Qom-Saveh area[J].Geosphere, 2009, 5(4):325-362. doi: 10.1130/GES00223.1
[12] Davoudian A R, Khalili M, Noorbehsht I, et al.Geochemistry of metabasites in the north of the Shahrekord, Sanandaj-Sirjan Zone, Iran.Neues Jahrbuch für Mineralogie-Abhandlungen[J].Journal of Mineralogy and Geochemistry, 2006, 182(3):291-298. http://www.ingentaconnect.com/content/schweiz/njma/2006/00000182/00000003/art00007
[13] Davoudian A, Genser J, Dachs E, et al.Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran[J].Mineralogy and Petrology, 2008, 92(3/4):393-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16778cd75a3c4275ceddd2bcba125cc0
[14] 刘英超, 宋玉财, 侯增谦, 等.伊朗扎格罗斯碰撞造山带马拉耶尔-伊斯法罕碳酸盐岩容矿铅锌成矿带[J].地质学报, 2015, 89(9):1573-1594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201509003
[15] Mohajjel M, Fergusson C L.Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran[J].Journal of Structural Geology, 2000, 22(8):1125-1139. doi: 10.1016/S0191-8141(00)00023-7
[16] Sarkarinejad K, Faghih A, Grasemann B.Transpressional deformations within the Sanandaj-Sirjan metamorphic belt(Zagros mountains, Iran)[J].Journal of Structural Geology, 2008, 30(7):818-826. doi: 10.1016/j.jsg.2008.03.003
[17] Babaahmadi A, Mohajjel M, Eftekhari A, et al.An investigation into the fault patterns in the Chadegan region, west Iran:Evidence for dextral brittle transpressional tectonics in the Sanandaj-Sirjan Zone[J].Journal of Asian Earth Sciences, 2012, 43(1):77-88. doi: 10.1016/j.jseaes.2011.08.012
[18] Nadimi A, Konon A.Gaw-Khuni Basin:An active stepover structure in the Sanandaj-Sirjan zone, Iran[J].Geological Society of America Bulletin, 2012b, 124(3/4):484-498. http://adsabs.harvard.edu/abs/2012GSAB..124..484N
[19] Safaei H.The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone(Iran)[J].Journal of Asian Earth Sciences, 2009, 35(5):391-400. doi: 10.1016/j.jseaes.2009.01.007
[20] Mazhari S, Bea F, Amini S, et al.The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran:a marker of the end of the collision in the Zagros orogeny[J].Journal of the Geological Society, 2009, 166(1):53-69. doi: 10.1144/0016-76492008-022
[21] Agard P, Omrani J, Jolivet L, et al.Zagros orogeny:a subduction-dominated process[J].Geological Magazine, 2011, 148(5/6):692-725. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Geological%20Magazine&atitle=Zagros%20orogeny%3A%20a%20subduction-dominated%20process
[22] Berberian F, Berberian M, Tectono-Plutonic Episodes in Iran[M].Geological Survey of Iran, 1981, 52: 566-593.
[23] Hall D L, Stemer S M, Bodnar R J.Freezing point depression of NaCl-KCl-H2O Solutions[J].Economic Geology, 1988, 83:197-202. doi: 10.2113/gsecongeo.83.1.197
[24] 韩朝辉, 宋玉财, 刘英超, 等.伊朗Emarat铅锌矿床成矿特征及矿床成因研究[J].地质学报, 2015, 89(9):1595-1606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201509004
[25] Clyton R N, O'neil J R, Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research, 1972, 77(17):3057-3067. doi: 10.1029/JB077i017p03057
[26] Beane R E.The magmatic-meteoric transition[M].Geothermal Resources Council Special Report, 1983, 13: 245-253.
[27] Roedder E.Composition of fluid inclusions[M].US Geological Survey Professional Paper, 1983, 440: 164.
[28] 郑永飞, 徐宝龙, 周根陶.矿物稳定同位素地球化学研究[J].地学前缘, 2000, 47(1):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200002001
[29] Ohmoto H.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J].Economic Geology, 1972, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551
[30] Veizer J, Holser W T, Wilgus C K.Correlation of 13C/12C and 34S/32S secular variation.Geochim[J].Cosmochim.Acta, 1980, 44:579-588. doi: 10.1016/0016-7037(80)90250-1
[31] Taylor B E.Magmatic volatiles: Isotope variation of C, H and S reviews in mineralogy[C]//Valley G W, Taylor H P, O'neil J R.Stable Isotopes in High Temperature Geological Process.Washington, D.C.: Mineralogical Society of America, 1986, 16: 185-226.
[32] 刘建明, 刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报, 1997, 17(4):448-456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700341921
[33] Clayton R N, Friedman I, Graf D L, et al.The origin of saline formation waters:1.Isotopic composition[J].Journal of Geophysical Research, 1966, 71:3869-3882. doi: 10.1029/JZ071i016p03869
[34] Hitchon B, Friedman I.Geochemistry and origin of formation waters in the western Canada sedimentary basin-I.Stable isotopes of hydrogen and oxygen[J].Geochimica et Cosmochimica Acta, 1969, 33:1321-1349. doi: 10.1016/0016-7037(69)90178-1
[35] Kharaka Y K, Berry F A F, Friedman I.Isotopic composition of oil-field brines from Kettleman North Dome, California, and their geologic implications[J].Geochimica et Cosmochimica Acta, 1973, 37:1899-1908. doi: 10.1016/0016-7037(73)90148-8
[36] Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J].Economic Geology, 1974, 69:843-83. doi: 10.2113/gsecongeo.69.6.843
[37] 陈俊, 王鹤年.地球化学[M].北京:科学出版社, 2004.
[38] Ferydoun G, Robert H M, Henry S.Genesis of sediment-Hosted Zn-Pb-Ba Deposits in the Irankuh District, Esfahan Area, West-Central Iran[J].Economic Geology, 1994, 89:1262-1278. doi: 10.2113/gsecongeo.89.6.1262
[39] George E, Claypool, William T, et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J].Chemical Geology, 1980, 28:199-260. doi: 10.1016/0009-2541(80)90047-9
[40] Detmers J, Bruchert V, Habicht K S, et al.Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes[J].Applied and Environmental Microbiology, 2001, 67:888-94. doi: 10.1128/AEM.67.2.888-894.2001
[41] Ohmoto H, Kaiser C J, Geer K A.Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits[C]//Herbert H K, Ho S E.Stable isotopes and Fluid Processes in Mineralisation.Geol.Dep.Univ.Extens.Univ[J].Western Australia, 1990, 23: 70-120.
[42] Machel H G.Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits[J].Carbonates Evaporites, 1989, 4:137-151. doi: 10.1007/BF03175104
[43] Doe B R, Zartman R E.Plumbotectonics1.The Phanerozoic[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits 2nd(Ed).Wiley Interscience, 1979: 22-70.
[44] Rajabi A, Rastad E, Canet C.Metallogeny of Cretaceous carbonate-hosted Zn-Pb deposits of Iran:geotectonic setting and data integration for future mineral exploration[J].International Geological Review, 2012, 54(14):1649-1672. doi: 10.1080/00206814.2012.659110
[45] Leach D L, Sangster D F, Kelley K D, et al.Sediment-hosted lead-zinc deposits:A global perspective[J].Economic Geology, 2005, 100:561-607. http://ci.nii.ac.jp/naid/10030174885
[46] Leach D L, Bradley D C, Huston D, et al.Sediment-Hosted Lead-Zinc Deposits in Earth History[J].Economic Geology, 2010, 105(3):593-625. doi: 10.2113/gsecongeo.105.3.593
[47] Paradis S, Hannigan P, Dewing K.Mississippi Valley-type lead-zinc deposits[C]//Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 185-203.
[48] Plumlee G S, Leach D L, Hofstra A H, et al.Chemical reaction path modeling of ore deposition in Mississippi valley-type Pb-Zn deposits of the Ozark region, U.S.Midcontinent[J].Economic Geology, 1994, 89:1361-1383. doi: 10.2113/gsecongeo.89.6.1361
[49] Dejonghe L, Darras B, Hughes G, et al.Weis D.Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia[J].Mineralium Deposita, 2002, 37(2):158-172. doi: 10.1007/s00126-001-0225-8
[50] Camprubí A, Gonzalez-Partida E, Torres-Tafolla E.Fluid inclusion and stable isotope study of the Cobre-Babilonia polymetallic epithermal vein system, Taxco district, Guerrero, Mexico[J].Journal of Geochemical Exploration, 2006, 89:33-38. doi: 10.1016/j.gexplo.2005.11.011
[51] Bendezú R, Page L, Spikings R, et al.New 40Ar/39Ar alunite ages from the Colquijirca district, Peru:evidence of a long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores[J].Mineralium Deposita, 2008, 43(7):777-789. doi: 10.1007/s00126-008-0195-1
-