Research progresses on marine sandstone copper deposit and some existent problems A comparative study of the Katanga copper mine in Central Africa and the Dongchuan copper mine in Yunnan
-
摘要:
海相砂岩型铜矿床是世界铜矿床主要类型之一,多产于新元古代和二叠纪的大型沉积盆地中。矿体通常呈层状、似层状赋存于碎屑岩或海相碳酸盐岩地层中,具多层位成矿特征。根据海相砂岩型铜矿的研究现状,从成矿物质来源和成矿流体性质、来源、运移、金属元素的沉淀机制等方面,综述中非加丹加铜矿带和云南东川铜矿带近年的研究成果,发现盆地卤水成矿模式逐渐替代了原来的沉积-改造模式,具有后生成矿特征。2个铜矿带属于元古宙砂页岩-白云质碳酸盐岩-黑色炭质页岩含铜建造,矿体具明显层控特征,受褶皱、断层和角砾岩的控制。通过2个铜矿带的含矿建造、矿化特征等对比,发现东川铜矿与中非加丹加铜矿有高度的相似性,具有盆地卤水成矿模式的特征。最后对海相砂岩型铜矿和东川铜矿的成因类型、成矿机制、流体来源等问题进行了讨论。
Abstract:Marine sandstone-hosted copper deposits constitute one of the most important copper deposits in the world, and most of them occur in giant Neoproterozoic and Permian sedimentary basins.The orebodies are usually stratified and stratoid in clastic or marine carbonate rock formations with multi-layered metallogenic characteristics.Based on the research status of marine sandstone-hosted copper deposits, the authors reviewed the research results of the Katanga copper belt and the Dongchuan copper belt discovered in recent years in the aspects of metallogenic material source, metallogenic fluid property, source, transportation and metal element precipitation mechanism, and found that the basin-brine-metallogenic model of epigenetic mineralization has gradually replaced the original sedimentary-transform model.Two copper deposit belts belong to the Proterozoic sand shales-dolomitic carbonate-black carbonaceous shales.The orebody has obvious stratigraphic characteristics, and is controlled by fold, fault and breccia.A comparison of the two copper belts in the aspects of ore-bearing structure and mineralization characteristics reveals that the Dongchuan copper deposit has a high degree of similarity to the Katanga copper deposit in that they both have the characteristics of basin-brine-metallogenic model.Then, the existing problems in the study of genetic type, metallogenic mechanism and fluid source from marine sandstone copper deposit and the Dongchuan copper deposit are discussed.
-
Key words:
- sandstone copper deposit /
- basin brine /
- evaporate /
- Katanga copper deposit /
- Dongchuan copper deposit
-
-
图 2 砂岩型铜矿主要成矿年代与铜矿石量关系(a)和海相砂岩型铜矿不同盆地的矿石量[3](b)
Figure 2.
图 8 红层盆地卤水循环与蚀变带的关系图[7]
Figure 8.
图 9 盆地卤水成矿模式图[7]
Figure 9.
图 11 东川铜矿与加丹加铜矿赋矿层位及矿化特征对比图(图中代号注释同图 4)
Figure 11.
表 1 中非铜矿带与东川铜矿成因观点
Table 1. Genetic view of central Africabelt and the Dongchuan copper deposit
中非铜矿带 东川铜矿 年代 成因观点 观点代表 年代 主要成因观点 观点代表 20世纪初 岩浆侵入热液成因 20世纪60—80年代 基性岩奖热液成因 20世纪30—40年代 同沉积成因 沉积-变质学说 海相喷流-沉积成因 文献[45-46] 20世纪80年代 裂谷成矿模式 元古宙裂谷型铜矿成矿:“四层楼”式矿床模式 文献[38, 52] 20世纪90年代至今 沉积-改造成因:同生沉积作用是主成矿阶段 文献[15-18, 34-35, 44] 20世纪90年代至今 沉积-改造成因 文献[40, 47, 51, 53] “沉积-活化改造” 文献[41, 48-49] 热液成因 文献[50] 海相砂岩型铜矿(盆地卤水成矿) 文献[1, 3, 5, 7-8, 19] 海相砂岩型铜矿(盆地卤水成矿) 文献[6, 10, 24] -
[1] Hayes T S, Cox D P, Piatak N M, et al.Sediment-Hosted Stratabound Copper Deposit Model:Chapter M of Mineral Deposit Models for Resource Assessment[M].Reston, Virginia:United States Geological Survey, 2015:1-148.
[2] 刘玄, 范宏瑞, 胡芳芳, 等.沉积岩型层状铜矿床研究进展[J].地质论评, 2015, 61(1):45-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201501004
[3] Taylor C D, Causey J D, Denning P D, et al.Descriptive models, grade-tonnage relationships, and databases for the assessment of sediment hosted copper deposits-With emphasis on deposits in the Central African Copperbelt, Democratic Republic of the Congo and Zambia[M].U.S.Geological Survey, 2013, 2010-5090-J:1-154.
[4] Kirkham R V.Distribution, settings, and genesis of sediment-hostedstratiform copper deposits[J].Geological Association of Canada Special Paper, 1989, 36:3-38. http://www.researchgate.net/publication/285735012_Distribution_settings_and_genesis_of_sediment-hosted_stratiform_copper_deposits
[5] Cox D P, Lindsey D A, Singer D P, et al.Sediment-hosted copper deposits of the world:Deposit models and database[M].Reston, Virginia:United States Geological Survey, 2003:1-53.
[6] 高辉, 裴荣富, 王安建, 等.海相砂页岩型铜矿成矿模式与地质对比——以中国云南东川铜矿和阿富汗安纳克铜矿为例[J].地质通报, 2012, 31(8):1332-1351. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120813&flag=1
[7] Hitzman M W, Kirkham R, Broughton D, et al.The Sediment-Hosted Stratiform Copper Ore System[J].Economic Geology, 2005:609-642. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=ac9b9c9a77a20bc7cbd366f467163553&_udi=B6VDT-4HDX8X4-1&_user=10&_coverDate=09%2F30%2F2005&_rdoc=11&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235991%232005%239995
[8] Hitzman M W, Selley D, Bull S.Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits through Earth History[J].Economic Geology, 2010, 105:627-639. doi: 10.2113/gsecongeo.105.3.627
[9] Selley D, Broughton D, Scott R, et al.A new look at the geology of the Zambian Copperbelt[J].Economic Geology, 2005:965-1000. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030913339001400201
[10] Zhao X F, Zhou M F, Li J W, et al.Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for tectonic evolution of the Yangtze Block[J].Precambrian Research, 2010, 182(1):57-69. http://www.sciencedirect.com/science/article/pii/S0301926810001695
[11] Zhao X F, Zhou M F, Hitzman M W, et al.Late Paleoproterozoic to Early Mesoprotero-zoic Tangdan Sedimentary Rock-Hosted Strata bound Copper Deposit, Yunnan Province, Southwest China[J].Economic Geology, 2012, 107(2):357-375. doi: 10.2113/econgeo.107.2.357
[12] Brown A C.World-class sediment-hosted stratiform copper deposits:Characteristics, genetic concepts and metalotects[J].Australian Journal of Earth Sciences, 1997, 44(3):317-328. doi: 10.1080/08120099708728315
[13] Zhao X F, Zhou M F, Li J W, et al.Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China_their possible link to the supercontinent cycle[J].Mineralium Deposita, 2013, 48(1):129-136. doi: 10.1007/s00126-012-0445-0
[14] Aurélien E, Anne-Sylvie A M, Olivier V, et al.Geochemical signatures of uranium oxides in the Lufilian belt:From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J].Ore Geology Reviews, 2013, 54:197-213. doi: 10.1016/j.oregeorev.2013.04.003
[15] Sweeney M A, Binda P L. Sediment-thoted stratifrom copper deposits[J].Geology of Africa, 1993, (1):365-369.
[16] Lerouge C, Cailteux J L H, Kampunzu A B, et al.Sulphur isotope constraints on formation conditions of the Luiswishi ore deposit, Democratic Republic of Congo (DRC)[J].Journal of African Earth Sciences, 2005, 42:173-182. doi: 10.1016/j.jafrearsci.2005.08.004
[17] Rainaud C, Mister S, Amstong R A, et al.Monazite U-Pb dating and 40A-39Ar the imochonology of metamorphic events in the Central Afican Coppei belt during the Pan-African Lufilian Orogeny[J].Journal of Afican Earth Sciences, 2005, 42:183-199. doi: 10.1016/j.jafrearsci.2005.08.007
[18] ElDesouky H A, Muchez P, Boyce A J, et al.Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)[J].Miner Deposota, 2010, 45:735-763. doi: 10.1007/s00126-010-0298-3
[19] Michael L Z, James D B, Broughton D, et al.Sediment-Hosted Stratabound Copper Assessment of theNeoproterozoic Roan Group, Central African Copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia[M].Reston, Virginia:United States Geological Survey, 2014:1-148.
[20] Sos'nicka M, Gigler G M, Kinnaird J A, et al.Mineralizing fluids of the supergene-enriched Mashitu South Cu-Co deposit, Katanga Copperbelt, DRC[J].Ore Geology Reviews, 2019, 109:201-228. doi: 10.1016/j.oregeorev.2019.04.001
[21] Oszczepalski S, Nowak G J, Bechtel A, et al.Evidence of oxidation of the Kupferschiefer in the Lubin-Sieroszowice deposit, Poland:implica-tions for Cu-Ag and Au-Pt-Pd mineralization[J].Geological Quarterly, 2002, 46:1-23. http://www.researchgate.net/publication/282406807_Evidence_of_oxidation_of_the_Kupferschiefer_in_the_Lubin-Sieroszowice_deposit_Poland_Implications_for_Cu-Ag_and_Au-Pt-Pd_mineralisation
[22] Michael L Z, Oszczepalski S, Heather LP, et al.Assessment of undiscovered copper resources associated with the Permian Kupferschiefer, Southern Permian Basin, Europe[M].Reston, Virginia:United States Geological Survey, 2010:1-94.
[23] Ruan H C, Hua R M.Copper deposition in deformed strata adjacent to a salt diapir, Dongchuan Area, Yunnan Province, China[J].Economic Geology, 1991, 86(7):1539-1545. doi: 10.2113/gsecongeo.86.7.1539
[24] 祝新友, 张雄, 蒋策鸿, 等.云南东川铜矿的后生成因与勘查意义[J].矿物学报, 2017, 增刊:154-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9884416
[25] Shubhabrata M, Vineet K, Monika S.Sediment Hosted Stratiform Copper (SSC) Mineralization in Bhudoli-Basari Area, North Delhi Fold Belt, Mesoproterozoic Delhi Supergroup, Rajasthan[J].Geological Society of India, 2019, 93(6):663-674. doi: 10.1007/s12594-019-1245-2
[26] Hayes T S, Landis G P, Whelan J F, et al.The Spar Lake strata-bound Cu-Ag deposit formed across a mixing zone between trapped natural gas and metals-bearing brine[J].Economic Geology, 2012, 7:1223-1249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e961699292d60785b06384f2af5510e
[27] Volodin R N, Chechetkin V S, Bogdanov Y V, et al.The Udokancupriferous sandstones deposit[J].Geology of Ore Deposits, 1994, 36(1):1-25.
[28] Chechetkin V S, Yurgenson G A, Narkelyun L F, et al.Geology and ores of the Udokan copper deposit[J].Russian Geology and Geophysics, 2000, 41(5):710-722. http://link.springer.com/article/10.1007/BF02551799
[29] 祝新友, 王京彬, 王玉杰, 等.新疆萨热克铜矿——与盆地卤水作用有关的大型矿床[J].矿产勘查, 2010, 2(1):28-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcj201101007
[30] Sillitoe R H, Perelló J, Creaser R A, et al.Two ages of copper mineralization in the Mwombezhi dome, northwestern Zambia:Metallogenic implications for the Central African Copper belt[J].Economic Geology, 2015, 110:1917-1923. doi: 10.2113/econgeo.110.8.1917
[31] Sillitoe R H, Perelló J, Creaser RA, et al.Age of the Zambian Copper belt[J].Miner Deposita, 2017, 52:1245-1268. doi: 10.1007/s00126-017-0726-8
[32] Cailteux J L H, Muchez P, Cuyper J D, et al.Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo)[J].Journal of African Earth Sciences, 2018, 140:76-93. doi: 10.1016/j.jafrearsci.2017.12.029
[33] McGowan R R, Roberts S, Boyce A J.Boyce Origin of the Nchanga copper-cobalt deposits of the Zambian Copper belt[J].Mineralium Deposota, 2006, 40:617-638. doi: 10.1007/s00126-005-0032-8
[34] Cailteux J L H, Kampunzu A B, Lerouge C, et al.Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copper belt[J].Journal African Earth Sciences, 2005, 42(1):134-158. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=ac9b9c9a77a20bc7cbd366f467163553&_udi=B6VDT-4HDX8X4-1&_user=10&_coverDate=09%2F30%2F2005&_rdoc=11&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235991%232005%239995
[35] Kampunzu A B, Cailteux J L H, Moine B, et al.Geochemical characterisation, provenance, source and depositional environment of Roches Argilo-Talqueuses (RAT) and Mines Subgroups sedimentary rocks in the Neoproterozoic Katanga Belt (Congo):lithostratigraphic implications[J].Journal of African Earth Sciences, 2005, 42:119-133. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=f95473f46e5c6eb0a87fa5a55f08abe3&_udi=B6VDT-4HHP5FW-1&_user=10&_coverDate=09%2F30%2F2005&_rdoc=10&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235991%232005%239995
[36] Jackson M P A, Warin O N, Woad G M, et al.Neoproterozoic allochthonous salt tectonics during the Lufilian Orogeny in the Katangan Copperbelt, central Africa[J].Geological Society of America Bulletin, 2003, 115:314-330. doi: 10.1130/0016-7606(2003)115<0314:NASTDT>2.0.CO;2
[37] Dewaele S, Muchez P, Vets J, et al.Multiphase origin of the Cu-Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo)[J].Journal of African Earth Sciences, 2006, 46:455-469. doi: 10.1016/j.jafrearsci.2006.08.002
[38] 龚琳, 何毅特, 陈天佑, 等.云南东川元古宙裂谷型铜矿[M].北京:冶金工业出版社, 1996:1-252.
[39] 蒋策鸿.云南东川铜矿床成矿流体与成因研究[D].中国地质大学(北京)硕士学位论文, 2019: 1-61.
[40] 冉崇英.东川式层控铜矿的成矿模式[J].中国科学, 1983, (3):249-257. http://www.cnki.com.cn/Article/CJFDTotal-JBXK198303009.htm
[41] 华仁民.东川式层状铜矿的沉积-改造成因[J].矿床地质, 1989, 8(2):3-13. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ198902001.htm
[42] Huang X W, Zhao X F, Qi L, et al.Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock- hosted stratiform Cu deposit, SW China[J].Chemical Geology, 2013, 347:9-19. doi: 10.1016/j.chemgeo.2013.03.020
[43] 代鸿章, 刘家军, 朱文兵.云南因民铜矿床构造沉积环境及成矿机制研究[J].地学前缘, 2018, 25(1):108-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201801008
[44] ElDesouky H A, Muchez P, Cailteux J L H.Two Cu-Co sulfide phases and contrasting fuid systems in the Katanga Copperbelt, Democratic Republic of Congo[J].Ore Geology Reviews, 2009, 36:315-332. doi: 10.1016/j.oregeorev.2009.07.003
[45] 施林道, 姜福芝, 卢海亚, 等.云南易门铜矿成因新见及其找矿意义[J].矿床地质, 1988, 7(2):12-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=294857
[46] 李志群.中元古界昆阳群因民组铁铜矿的成矿地球化学研究[J].矿产与地质, 1996, 10(52):100-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600324457
[47] 冉崇英, 吴鹏.东川-易门式铜矿床成矿作用研究的几个问题[J].大地构造与成矿学, 2014, 38(4):848-854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201404010
[48] 华仁民, 阮惠础, 倪培.东川式层控铜矿中非层状矿体的形成机制初议[J].地质找矿论丛, 1993, 8(4):1-8. http://www.ixueshu.com/document/946e317b94c487689ef03c0a227aa4f9318947a18e7f9386.html
[49] 阮惠础, 华仁民, 倪培.东川式铜矿的成因再探[J].地质找矿论丛, 1988, 3(1):9-22. http://www.cnki.com.cn/Article/CJFDTotal-DZZK198801001.htm
[50] 邱华宁, Wijbrans J R, 李献华, 等.东川式层状铜矿40Ar-39Ar成矿年龄研究:华南地区晋宁-澄江期成矿作用新证据[J].矿床地质, 2002, 21(2):129-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200202005
[51] 薛步高.东川矿区火山岩-侵入岩的改造-成矿作用[J].云南地质, 2009, 28(4):351-366. http://d.wanfangdata.com.cn/Periodical/yndz200904001
[52] 蒋家申, 李天福, 陈贤胜.滇中元古宙昆阳裂谷系铜矿成矿系列[J].云南地质, 1996, 15(2):205-218. http://www.cnki.com.cn/Article/CJFDTotal-YNZD602.010.htm
[53] 涂光炽.中国层控矿床地球化学[M].北京:科学出版社, 1984:376-380.
[54] 高坪仙.东非铜矿带与中国东川铜矿带某些地质特征对比[J].国外前寒武纪地质, 1996, (2):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600416068
[55] 冉崇英.论东川-易门式铜矿的矿源与成矿流体[J].昆明工学院学报, 1989, 14(4):12-20. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=KMLG198904002
[56] 叶霖.东川稀矿山式铜矿地球化学研究[D].中国科学院地球化学研究所博士学位论文, 2004: 1-117.
[57] 华仁民.试论层状铜矿的三种主要成因模式[J].地质论评, 1995, 41(2):112-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp199502002
[58] 衣成利.云南东川铜矿构造演化与辉长岩地球化学特征[D].昆明理工大学硕士学位论文, 2010: 1-82.
[59] 朱文兵.云南因民铜矿床地质地球化学特征与成因研究[D].中国地质大学(北京)硕士学位论文, 2017: 1-79.
[60] 李元龙.东川稀矿山式铜铁矿床地质地球化学特征及构造控矿模式分析[D].昆明理工大学硕士学位论文, 2013: 1-102.
[61] Richards J P, Krogh T E, Spooner E T C.Fluid inclusion characteristics and U-Pb rutile age of late hyd rothermal alteration and veining at the Musoshi stratiform copper deposit, Central African Copper Belt, Zaire[J].Economic Geology, 1988, 83(1):118-139. doi: 10.2113/gsecongeo.83.1.118
[62] Greyling L N, Robb L J, Master S, et al.The nature of early basinal fluids in the Zambian Copperbelt:a case study from the Chambisi deposit[J].Journal of African Earth Sciences, 2005, 42:159-172. doi: 10.1016/j.jafrearsci.2005.08.002
[63] Annels A E.Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi Basin[J].Geological Association of Canada, Special Paper, 1989, 36:427-452. http://www.researchgate.net/publication/279602090_Ore_genesis_in_the_Zambian_Copperbelt_with_particular_reference_to_the_northern_sector_of_the_Chambishi_Basin
[64] Davidson C F.A possible mode of origin of strata-bound copper ores[J].Economic Geology, 1965:942-954. http://www.researchgate.net/publication/247861129_A_possible_mode_of_origin_of_strata-bound_copper_ores
[65] Rose A W.The Effect of Cuprous Chloride complexes in the origin of Red-bed copper and related deposits[J].Economic Geology, 1976, 71:036-1048. http://www.researchgate.net/publication/247861967_The_effect_of_cuprous_chloride_complexes_in_the_origin_of_red-bed_copper_and_related_deposits
[66] Barra F.Applications of the Re-Os isotopic system in the study of mineral deposits: Geochronology and source of metals[D].University of Arizona, Tucson, 2005: 1-211.
[67] 华仁民.成矿过程中由流体混合而导致金属沉淀的研究[J].地球科学进展, 1994, 9(4):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400049215
[68] Haynes D W.Stratiform copper deposits hosted by low-energy sediments:Timing of sulfide precipitation an hypothesis[J].Economic Geology, 1986, 81:250-265. doi: 10.2113/gsecongeo.81.2.250
[69] Muchez P, André Mayer A S, ElDesouky H A, et al.Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt[J].Mineral Deposita, 2015, 50:437-447. doi: 10.1007/s00126-015-0582-3
[70] Decrée S, Derloule E, DePutter T, et al.SIMS U-Pb dating of uranium mineralization in theKatanga Copperbelt:constraints for the geodynamic context[J].Ore Geology Reviews, 2011, 40:81-89. doi: 10.1016/j.oregeorev.2011.05.003
[71] 方维萱, 杨新雨, 郭茂华, 等.云南白锡腊碱性钛铁质辉长岩类与铁氧化物铜金型矿床关系研究[J].大地构造与成矿学, 2013, 7(2):242-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201302008
-