The response of soil microbial functional diversity to ecological succession in karst area: A case study of Maolan National Nature Reserve in Guizhou Province
-
摘要:
利用BIOLOG ECO微平板法研究了喀斯特地区土壤微生物功能多样性对生态演替的响应情况。在研究区选取具有代表性的4个不同群落演替阶段:原生乔木林、次生乔灌混合林、灌丛、草坡,同时选择一个非喀斯特森林样地作为对照,对选取的不同生态系统土壤的微生物功能多样性进行研究。结果发现,随着乔木林逆向演替到灌丛的过程,微生物活性有逐渐降低的趋势,功能多样性对生态演替响应灵敏,土壤微生物在喀斯特地区比非喀斯特地区总体表现出更高的活性和丰富度,但群落均匀度较低,结构不稳定。主成分分析显示,演替使微生物的代谢模式产生了明显的分异,起主要分异作用的碳源是糖类、羧酸类和聚合物类。颜色变化率和主成分分析综合表明,演替进行到草坡阶段,较大的环境变化可能使土壤微生物采取了r-策略(r-strategistis)。根据逆向演替过程中土壤微生物功能多样性的变化,灌丛阶段可以视为岩溶生态系统整个演替阶段的阈值。
Abstract:The BIOLOG ECO-plate method was used to study the response of soil microbial functional diversity to ecological succession in karst area.In the study area, four different community succession stages were selected to study the microbial function diversity of soil, i.e., virgin arbor-forests, secondary arbor-shrub mixed forests, shrub, and grass-land, and a non-karst forests plot was selected as a control.The results show that, with the ecological succession of arbor-forest to shrub process, the microbial activity exhibits gradual decreasing tendency.The functional diversity is sensitive to response to the ecological succession.Soil microbes show higher activity and richness in karst areas than in non-karst areas, but the community uniformity is lower and the structure is more unstable.Principal component analysis shows that the succession causes significant differentiation of the metabolic patterns of microorganisms, and the carbon sources that play a major role in differentiation are sugars, carboxylic acids and polymers.According to the average well color development (AWCD) and principal component analysis, the authors hold that larger environmental changes may cause the soil microorganisms to adopt the r strategistis when the succession progresses to the grass slope stage.According to the change of soil microbial functional diversity during the reverse succession, the shrub stage can be regarded as the threshold of the entire succession stage of the karst ecosystem.
-
Key words:
- karst /
- ecological succession /
- microbial functional /
- BIOLOG
-
-
表 1 不同群落演替阶段的植被特征
Table 1. Vegetationcharacteristics of different succession stages
植被类型 坡度 坡向 基岩裸露率 植被覆盖率 植被特征 原生乔木林 30°~40° ENE 60%~90% 90%~100% 层次结构比较完整,乔木层、灌木层、草本层之间植物的分化清晰,以乔木层为主,高10~20 m,乔木层覆盖率达80%以上;灌木层高3~8 m,盖度5%~10%;优势种主要有圆果化香、短萼海桐、小果润楠、青檀、光叶海桐、裂果卫茅、丝栗栲、十大功劳、天仙果等;地表层有地衣苔藓着生。此外,林下覆盖有3~5 cm枯枝落叶层 次生乔灌混合林 30°~40° WSW 50%~80% 90%~100% 林分层次结构分化明显,乔木层、灌木层比较发达,高5~12 m,乔木层覆盖率达80%以上;灌木层高2~3 m,盖度10%左右;优势种主要有云贵鹅耳枥、青冈栎、丝栗栲、马尾松、皱叶海桐、香叶树等;还有少量藤刺、蕨类、地衣苔藓等分布。林下枯枝落叶层厚1~2 cm 灌丛 20°~30° NNE 70%~80% 80%~100% 林分垂直结构简单,有少量乔木,主要以灌木层为主,高2.5~3 m,覆盖率达80%以上,郁闭度大;优势种为:南天竹、化香、香叶树、虎刺、柔毛绣球花、荔波鹅耳枥、长叶榨木、齿叶黄皮、多脉青冈、小果蔷薇等。林下覆盖的枯枝落叶层约1~2 cm 草坡 30°~40° NNW 50%~70% 90%~100% 主要以草本植物占优势,灌木层高约1.5 m,盖度小于10%;草本层高在0.5~1 m之间,覆盖率达90%以上,优势种主要有黄茅、毛叶荩草、毛轴蕨、铁芒萁、五节芒等。地表覆盖的凋落物相对较少 非喀 30°~40° NNE 0% 90%~100% 以乔木林为主,高10~20 m,优势种为木荷、多脉青冈、甜楮栲、柃木等地表有少量蕨类植物。枯枝落叶厚度3~5 cm 表 2 各样地小生境面积权重
Table 2. Area weighted value of different microhabitat types in the sample plot
植被类型 小生境类型 土面 石缝 石沟 原生林 38% 2% 60% 次生林 96% 0.5% 3.5% 灌丛 10% 5% 85% 草坡 100% 0% 0% 非喀 100% 0% 0 % 表 3 各演替阶段微生物群落多样性指数
Table 3. Microbial community diversity Indexes of different succession stages
演替阶段 Shannon指数 Simpson指数 McIntosh指数 原生林 3.268±0.040a 0.959±0.001a 9.763±0.362a 次生林 3.261±0.041a 0.958±0.001ab 9.347±0.929ab 灌丛 3.213±0.049ac 0.955±0.002b 8.623±0.462b 草坡 3.340±0.011b 0.963±0.001c 9.723±0.739a 非喀 3.151±0.015c 0.953±0.001d 10.272±0.260a 注:同一列中具有相同字母表示结果差异不显著 表 4 不同演替阶段主成分得分系数分析
Table 4. The PC scores for different succession stages
主成分PC 演替阶段 平均值 P < 0.05 PC1 原生林 0.201±0.264 a 次生林 0.088±0.849 a 灌丛 -0.134±0.589 a 草坡 -1.449±0.301 b 非喀 1.293±0.123 c PC2 原生林 -0.096±0.188 a 次生林 -0.884±0.612 b 灌丛 -1.06±0.65 b 草坡 0.808±0.088 c 非喀 1.232±0.184 c 注:同一列中具有相同字母表示结果差异不显著 表 5 与PC1和PC2显著相关的主要碳源
Table 5. Correlation coefficients between main source of carbon and PC1 or PC2
碳源类型
(PC1)碳源名称 载荷值 碳源类型
(PC2)碳源名称 载荷值 糖类 β-甲基-D-葡萄糖苷 -0.707 羧酸类 丙酮酸甲酯 0.814 羧酸类 D-半乳糖醛酸 0.655 氨基酸类 L-苏氨酸 0.722 聚合物类 吐温40 0.744 羧酸类 D-葡糖胺酸 0.776 糖类 i-赤藓糖醇 -0.703 羧酸类 衣康酸 -0.764 氨基酸类 L-苯丙氨酸 0.677 糖类 D, L-α-
磷酸甘油0.727 糖类 D-甘露醇 0.661 胺类 腐胺 0.806 聚合物类 α-环式糊精 -0.702 糖类 N-乙酰-D葡萄糖氨 0.691 聚合物类 肝糖 -0.727 -
[1] 陆雅海.土壤微生物学; 微生物多样性; 生物地球化学循环; 国际土壤年[J].中国科学院院刊, 2015, 30(Z1):106-114.
[2] Bruggen A H C V, Semenov A M, Zeiss M R.In search of biological indicators for soil health and disease suppression[J].Applied Soil Ecology, 2000, 15(1):13-24. http://cn.bing.com/academic/profile?id=ee83d5b7ed65ce42601e0ac0ce8a6a7f&encoded=0&v=paper_preview&mkt=zh-cn
[3] 何良菊, 魏德洲, 张维庆.土壤微生物处理石油污染的研究[J].环境工程学报, 1999, (3):110-115. http://d.old.wanfangdata.com.cn/Periodical/sxhg201510008
[4] 张炳欣, 张平.影响引入微生物根部定殖的因素[J].应用生态学报, 2000, (6):951-953. http://www.cnki.com.cn/Article/CJFDTotal-YYSB200006033.htm
[5] 王荣, 蔡运龙.西南喀斯特地区退化生态系统整治模式[J].应用生态学报, 2010, 21(4):1070-1080. http://d.old.wanfangdata.com.cn/Periodical/yystxb201004039
[6] 潘根兴, 曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程——以桂林峰丛洼地岩溶系统为例[J].中国岩溶, 1999, 18(4):289-296. http://d.old.wanfangdata.com.cn/Periodical/zgyr199904001
[7] 周政贤.茂兰喀斯特森林科学考察集[M].贵阳:贵州人民出版社, 1987.
[8] 朱守谦.喀斯特森林生态研究二[M].贵阳:贵州科技出版社, 1997.
[9] 王世杰, 卢红梅, 周运超, 等.茂兰喀斯特原始森林土壤有机碳的空间变异性与代表性土样采集方法[J].土壤学报, 2007, 44(3):475-483. http://d.old.wanfangdata.com.cn/Periodical/trxb200703014
[10] 田雅楠, 王红旗.Biolog法在环境微生物功能多样性研究中的应用[J].环境科学与技术, 2011, 34(3):50-57. http://d.old.wanfangdata.com.cn/Periodical/hjkxyjs201103012
[11] Garland J L, Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Appl Environ Microbiol, 1991, 57(8):2351-2359. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_183575
[12] 吴蔓莉, 袁婧, 李炜, 等.石油污染土壤的微生物修复及土壤微生物活性变化[J].应用与环境生物学报, 2016, 22(5):878-883. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201605022
[13] 蔡进军, 董立国, 李生宝, 等.黄土丘陵区不同土地利用方式土壤微生物功能多样性特征[J].生态环境学报, 2016, (4):555-562. http://www.cnki.com.cn/Article/CJFDTotal-TRYJ201604002.htm
[14] Schutter M, Dick R.Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J].Soil Biology & Biochemistry, 2001, 33(11):1481-1491. doi: 10.1016/s0038-0717(01)00057-8
[15] Zak J C, Willig M R, Moorhead D L, et al.Functional diversity of microbial communities:A quantitative approach[J].Soil Biology & Biochemistry, 1994, 26(9):1101-1108. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0038-0717(94)90131-7/
[16] Yang Y, Yao J, Hua X.Effect of pesticide pollution against functional microbial diversity in soil[J].Journal of Microbiology, 2000, 20:23-25, 47. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSWX200002007.htm
[17] Zabinski C A, Gannon J E.Effects of recreational impacts on soil microbial communities[J].Environmental Management, 1997, 21(2):233. doi: 10.1007/s002679900022
[18] 赵杰, 王克林.西南喀斯特白云岩地区植被进展演替伴随土壤生物逆行演替[C]//第七次全国土壤生物与生物化学学术研讨会暨第二次全国土壤健康学术研讨会论文集.2014.
[19] Hao L R FY, Hao Z O, et al.SPSS practical statistics analysis[M].Beijing:China Water Power Press, 2003.
[20] 王强, 戴九兰, 吴大千, 等.微生物生态研究中基于BIOLOG方法的数据分析[J].生态学报, 2010, 30(3):817-823. http://d.old.wanfangdata.com.cn/Periodical/stxb201003032
[21] 李博.生态学[M].北京:高等教育出版社, 2000:76-83.
[22] 安明态.茂兰喀斯特植被恢复过程群落结构与健康评价[D].贵州大学硕士学位论文, 2008.
[23] 何寻阳, 王克林, 徐丽丽, 等.喀斯特地区植被不同演替阶段土壤细菌代谢多样性及其季节变化[J].环境科学学报, 2008, 28(12):2590-2596. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200812030
[24] Knoop W T, Walker B H.Interactions of woody and herbaceous vegetation in a southern African Savanna[J].Journal of Ecology, 1985, 73(1):235-253. http://d.old.wanfangdata.com.cn/NSTLQK/10.2307-2259780/
[25] Vogt K A, Gordon J C, Wargo J P, et al.Ecosystems[M].Springer, New York, 1997.
[26] Schlesinger W H, Bernhardt E S.Biogeochemistry:an analysis of global change[J].Quarterly Review of Biology, 1997, 54(4):353-423. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz200406004
[27] Read D J, Perez-Moreno J.Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?[J].New Phytologist, 2003, 157(3):475-492. http://d.old.wanfangdata.com.cn/NSTLQK/10.1046-j.1469-8137.2003.00704.x/
[28] Hansen R A.Red oak litter promotes a microarthropod functional group that accelerates its decomposition[J].Plant & Soil, 1999, 209(1):37-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=181a7ba460287f43b136762db7891234
[29] 张薇, 魏海雷, 高洪文, 等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志, 2005, 24(1):48-52. http://d.old.wanfangdata.com.cn/Periodical/stxzz200501010
[30] Packer A, Clay K.Soil pathogens and spatial patterns of seedling mortality in a temperate tree[J].Nature, 2000, 404(6775):278. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-35005072/
[31] Klironomos J N.Feedback with soil biota contributes to plant rarity and invasiveness in communities[J].Nature, 2002, 417(6884):67-70. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-417067a/
[32] Heijden M G A V D, Klironomos J N, Ursic M, et al.Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J].Nature, 1998, 396(6706):69-72. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-23932/
-