内蒙古达茂旗黄花滩铜镍矿辉长岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特征

李志丹, 朵兴芳, 李效广, 张锋, 张健, 陈军强, 王佳营, 文思博. 内蒙古达茂旗黄花滩铜镍矿辉长岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特征[J]. 地质通报, 2020, 39(4): 491-502.
引用本文: 李志丹, 朵兴芳, 李效广, 张锋, 张健, 陈军强, 王佳营, 文思博. 内蒙古达茂旗黄花滩铜镍矿辉长岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特征[J]. 地质通报, 2020, 39(4): 491-502.
LI Zhidan, DUO Xingfang, LI Xiaoguang, ZHANG Feng, ZHANG Jian, CHEN Junqiang, WANG Jiaying, WEN Sibo. Geochemical characteristics, zircon U-Pb age and Hf isotope of the gabbro in the Huanghuatan Cu-Ni deposit, Darhan Muminggan Joint Banner, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(4): 491-502.
Citation: LI Zhidan, DUO Xingfang, LI Xiaoguang, ZHANG Feng, ZHANG Jian, CHEN Junqiang, WANG Jiaying, WEN Sibo. Geochemical characteristics, zircon U-Pb age and Hf isotope of the gabbro in the Huanghuatan Cu-Ni deposit, Darhan Muminggan Joint Banner, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(4): 491-502.

内蒙古达茂旗黄花滩铜镍矿辉长岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特征

  • 基金项目:
    中国地质调查局项目《内蒙古阴山地区资源远景调查评价》(编号:12120113057300)、《硬岩型铀钍等矿产资源远景调查与勘查示范》(编号:DD20160129)、《鄂尔多斯、柴达木等盆地砂岩型铀矿调查》(编号:DD20190119)、国家自然科学基金项目《内蒙古赵井沟过铝质花岗岩浆演化与铌钽等元素富集机制》(批准号:41502082)
详细信息
    作者简介: 李志丹(1986-), 男, 硕士, 工程师, 从事矿床学研究工作。E-mail:cugcug@qq.com
  • 中图分类号: P597;P618.41;P618.63

Geochemical characteristics, zircon U-Pb age and Hf isotope of the gabbro in the Huanghuatan Cu-Ni deposit, Darhan Muminggan Joint Banner, Inner Mongolia

  • 内蒙古达茂旗黄花滩铜镍矿位于华北克拉通北缘白云鄂博裂谷系,铜镍矿体产出于辉长岩体边缘与片麻岩的接触部位。利用LA-ICP-MS技术测得黄花滩铜镍矿辉长岩锆石206Pb/238U年龄为268.7±1.1 Ma(MSWD=0.44,n=32),限定黄花滩铜镍矿是中二叠世岩浆活动的产物。黄花滩矿区辉长岩具有高Al2O3(17.72%~19.81%)、偏碱性(K2O+Na2O=4.37%~5.09%)、低P2O5(0.28%~0.42%)、低Ti2O(0.83%~1.21%)的特征,属钙碱性系列。岩石稀土元素总量为144×10-6~167×10-6,富集轻稀土元素,(La/Yb)N介于7.43~8.85之间,显弱负Eu异常(δEu=0.84~0.88),微量元素富集大离子亲石元素(Rb、Ba、K、Sr),亏损高场强元素(Nb、Ta、Ti)。锆石εHft)变化范围为-17.69~-12.53(平均值为-15.21),二阶段"地壳"Hf模式年龄(tHf2)介于2082~2411 Ma之间。地球化学特征表明,辉长岩源区为大量遭受地壳混染的岩石圈地幔,地壳物质很可能由色尔腾山群岩石部分熔融形成。结合区域构造演化,认为黄花滩辉长岩形成于造山后构造背景,为晚古生代伸展体制下幔源岩浆活动的产物。

  • 加载中
  • 图 1  黄花滩铜镍矿大地构造位置图(A)和矿区地质图(B)(A据参考文献[12]修改;B据参考文献修改)

    Figure 1. 

    图 2  黄花滩铜镍矿区辉长岩宏观(A)及微观(B)特征

    Figure 2. 

    图 3  黄花滩铜镍矿辉长岩锆石阴极发光(CL)图像、206Pb/238U年龄(实线圈)和εHf(t)值(虚线圈)

    Figure 3. 

    图 4  黄花滩铜镍矿辉长岩锆石U-Pb谐和图

    Figure 4. 

    图 5  黄花滩铜镍矿辉长岩TAS图解(底图据参考文献[23])

    Figure 5. 

    图 6  黄花滩铜镍矿辉长岩AFM图解(底图据参考文献[22])

    Figure 6. 

    图 7  黄花滩铜镍矿辉长岩稀土元素配分图(A)和微量元素蛛网图(B)(标准化数据据参考文献[24])

    Figure 7. 

    图 8  黄花滩铜镍矿辉长岩Hf同位素演化图解

    Figure 8. 

    表 1  黄花滩铜镍矿辉长岩LA-ICP-MS锆石U-Th-Pb同位素数据

    Table 1.  LA-ICP-MS zircon U-Th-Pb data for the gabbro from the Huanghuatan Cu-Ni deposit

    测点号 含量/10-6 同位素比值 年龄/Ma
    Pb Th U 232Th/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 6 92 118 0.78 0.0028 0.06 0.0042 0.35 0.0243 0.04 0.0005 607 151 303 21 265 3
    2 38 804 702 1.14 0.0018 0.06 0.0013 0.34 0.0081 0.04 0.0004 516 49 300 7 273 3
    3 20 335 400 0.84 0.0024 0.05 0.0022 0.31 0.0134 0.04 0.0005 339 94 277 12 269 3
    4 30 650 580 1.12 0.0045 0.05 0.0015 0.30 0.0094 0.04 0.0004 205 71 264 8 271 3
    5 49 1237 905 1.37 0.0021 0.05 0.0012 0.32 0.0073 0.04 0.0004 357 49 280 6 271 3
    6 6 81 125 0.65 0.0006 0.06 0.0047 0.33 0.0275 0.04 0.0005 491 181 292 24 267 3
    7 17 394 322 1.22 0.0061 0.06 0.0025 0.32 0.0153 0.04 0.0004 413 100 282 13 266 3
    8 5 70 109 0.65 0.0008 0.05 0.0068 0.31 0.0394 0.04 0.0005 325 293 275 35 269 3
    9 3 24 55 0.44 0.0017 0.05 0.0118 0.30 0.0579 0.04 0.0007 268 522 268 51 268 5
    10 20 446 400 1.12 0.0027 0.05 0.0026 0.32 0.0155 0.04 0.0005 388 108 281 14 268 3
    11 3 28 55 0.52 0.0028 0.06 0.0126 0.33 0.066 0.04 0.0006 425 508 286 58 269 4
    12 7 122 161 0.76 0.0027 0.06 0.004 0.33 0.0239 0.04 0.0005 436 161 286 21 268 3
    13 25 532 522 1.02 0.0035 0.06 0.0015 0.32 0.0092 0.04 0.0004 417 61 285 8 269 3
    14 13 263 268 0.98 0.0032 0.07 0.0024 0.39 0.0144 0.04 0.0005 825 75 332 12 266 3
    15 2 19 50 0.38 0.0007 0.08 0.0128 0.48 0.0679 0.04 0.0008 1291 297 401 56 264 5
    16 8 146 165 0.89 0.0034 0.06 0.0087 0.32 0.0506 0.04 0.0005 438 349 286 44 267 3
    17 6 76 133 0.57 0.0021 0.05 0.005 0.29 0.0284 0.04 0.0005 173 233 257 25 266 3
    18 12 245 262 0.94 0.0019 0.06 0.0027 0.34 0.016 0.04 0.0005 549 100 297 14 266 3
    19 5 76 122 0.62 0.0017 0.05 0.006 0.32 0.0346 0.04 0.0005 347 254 278 31 270 3
    20 8 132 187 0.71 0.0028 0.05 0.0032 0.32 0.0193 0.04 0.0005 392 133 282 17 269 3
    21 15 299 313 0.96 0.0042 0.05 0.0018 0.30 0.0113 0.04 0.0005 256 83 269 10 271 3
    22 10 155 214 0.72 0.003 0.05 0.0038 0.30 0.0228 0.04 0.0005 219 175 265 20 270 3
    23 10 168 215 0.78 0.0056 0.06 0.0032 0.33 0.0193 0.04 0.0005 495 125 290 17 266 3
    24 5 61 113 0.54 0.0024 0.05 0.0065 0.32 0.0376 0.04 0.0005 361 275 279 33 270 3
    25 15 62 363 0.17 0.0007 0.05 0.002 0.29 0.0117 0.04 0.0004 181 93 257 10 266 3
    26 30 733 578 1.27 0.032 0.05 0.0013 0.29 0.0077 0.04 0.0005 143 60 258 7 271 3
    27 13 265 260 1.02 0.0035 0.05 0.0024 0.31 0.0148 0.04 0.0005 282 108 271 13 270 3
    28 19 384 386 0.99 0.0031 0.05 0.0021 0.29 0.0127 0.04 0.0004 189 99 261 11 269 3
    29 10 180 206 0.87 0.0028 0.05 0.0029 0.31 0.0173 0.04 0.0005 343 125 277 15 269 3
    30 4 26 83 0.32 0.0031 0.05 0.0075 0.30 0.0424 0.04 0.0006 199 346 263 38 271 4
    31 19 332 368 0.90 0.0128 0.05 0.0018 0.30 0.011 0.04 0.0004 259 81 267 10 268 3
    32 4 47 81 0.58 0.0027 0.06 0.0075 0.33 0.0429 0.04 0.0006 416 305 289 38 273 4
    下载: 导出CSV

    表 2  黄花滩铜镍矿辉长岩锆石Lu-Hf同位素数据

    Table 2.  Zircon Lu-Hf isotope compositions of the gabbro from the Huanghuatan Cu-Ni deposit

    测点号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) tHf1/Ma tHf2/Ma fLu/Hf
    1 265 0.009247 0.000044 0.000254 0.000001 0.282122 0.000020 -20.79 -17.22 1561 2378 -0.99
    2 273 0.069069 0.000798 0.001775 0.000025 0.282170 0.000027 -21.36 -15.62 1557 2282 -0.95
    3 269 0.089309 0.000338 0.002179 0.000013 0.282153 0.000026 -19.34 -16.38 1598 2326 -0.93
    4 271 0.025011 0.000307 0.000629 0.000007 0.282107 0.000023 -20.23 -17.69 1597 2411 -0.98
    5 266 0.036620 0.000350 0.000861 0.000008 0.282254 0.000025 -18.81 -12.63 1403 2089 -0.97
    6 269 0.083191 0.001569 0.001919 0.000029 0.282205 0.000033 -19.80 -14.49 1513 2208 -0.94
    7 268 0.013847 0.000116 0.000332 0.000002 0.282184 0.000027 -17.97 -14.97 1479 2239 -0.99
    8 269 0.015206 0.000229 0.000333 0.000005 0.282168 0.000035 -23.20 -15.52 1501 2274 -0.99
    9 266 0.140477 0.001273 0.003006 0.000019 0.282225 0.000045 -20.30 -14.04 1529 2177 -0.91
    10 269 0.052841 0.000849 0.001232 0.000022 0.282200 0.000023 -21.64 -14.54 1492 2212 -0.96
    11 271 0.124662 0.000959 0.002756 0.000015 0.282240 0.000032 -21.78 -13.36 1497 2138 -0.92
    12 266 0.026205 0.000400 0.000713 0.000004 0.282212 0.000021 -22.35 -14.09 1455 2181 -0.98
    13 266 0.094690 0.000876 0.002276 0.000016 0.282264 0.000029 -21.61 -12.53 1442 2082 -0.93
    14 271 0.056553 0.001984 0.001391 0.000049 0.282116 0.000024 -20.79 -17.50 1617 2399 -0.96
    15 269 0.020958 0.000219 0.000518 0.000006 0.282198 0.000019 -21.36 -14.49 1467 2209 -0.98
    16 269 0.023321 0.000119 0.000647 0.000003 0.282160 0.000020 -19.34 -15.86 1525 2295 -0.98
    17 271 0.013458 0.000123 0.000418 0.000004 0.282156 0.000020 -20.23 -15.91 1521 2300 -0.99
    18 268 0.015530 0.000116 0.000496 0.000003 0.282140 0.000018 -18.81 -16.56 1546 2338 -0.99
    19 273 0.027577 0.000967 0.000869 0.000030 0.282161 0.000018 -19.80 -15.77 1532 2292 -0.97
    注:εHf(0)=[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]×10000; εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10000; tHf1=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Hf/177Hf)DM]}; tHf2= tHf1-(tHf1- t)(fCC- fS)/(fCC- fDM); fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;其中(176Hf/177Hf)S和(176Hf/177Hf)S为测定值,(176Lu/177Hf)CHUR和(176Hf/177Hf)CHUR, 0分别为0.0332和0.282772 [19]; (176Lu/177Hf)DM和(176Hf/177Hf)DM值分别为0.0384和0.28325 [20], fCCfSfDM分别为大陆地壳、样品和亏损地幔的的fLu/Hf。λ=1.867×10-11 a-1[21], t为锆石的形成时间
    下载: 导出CSV

    表 3  黄花滩铜镍矿辉长岩主量、微量和稀土元素分析结果

    Table 3.  Major, trace and rare earth element data of the gabbro from the Huanghuatan Cu-Ni deposit

    样号 13HT01 13HT02 13HT03 13HT04 13HT05
    SiO2 48.66 49.84 48.26 53.25 49.21
    Al2O3 19.81 19.56 19.24 17.72 19.55
    Fe2O3 2.70 2.40 2.31 2.14 2.55
    FeO 7.12 7.02 7.51 5.78 6.98
    FeOT 9.55 9.18 9.59 7.71 9.27
    CaO 8.23 8.21 8.58 8.19 8.09
    MgO 5.04 4.81 5.50 5.73 4.89
    K2O 1.83 1.72 1.82 1.28 1.78
    Na2O 3.26 3.18 3.09 3.09 3.25
    TiO2 1.21 1.15 1.15 0.83 1.19
    P2O5 0.41 0.38 0.40 0.28 0.42
    MnO 0.15 0.14 0.15 0.14 0.14
    烧失量 0.5 0.51 0.85 0.62 0.84
    总量 98.92 98.92 98.86 99.05 98.89
    Mg# 48.46 48.28 50.54 56.97 48.45
    Na2O+ K2O 5.09 4.90 4.91 4.37 5.03
    K2O/ Na2O 0.56 0.54 0.59 0.41 0.55
    La 27.7 27.8 26.5 25.9 29.4
    Ce 60.1 59.2 59.1 56.4 62.6
    Pr 8.53 8.41 8.58 7.89 8.86
    Nd 34.8 33.7 34.6 30.1 35.7
    Sm 7.29 7.11 7.42 6.1 7.74
    Eu 1.96 1.97 1.94 1.61 2.02
    Gd 6.39 6.27 6.34 5.35 6.68
    Tb 1.02 0.95 0.96 0.8 1
    Dy 5.44 5.17 5.45 4.21 5.48
    Ho 1.03 0.99 1.02 0.82 1.06
    Er 2.67 2.60 2.71 2.15 2.78
    Tm 0.4 0.39 0.4 0.34 0.42
    Yb 2.5 2.38 2.56 2.10 2.52
    Lu 0.37 0.36 0.38 0.33 0.40
    Y 26.6 25.1 26 20.7 26.6
    ∑REE 160.20 157.30 157.96 144.10 166.66
    LREE 140.38 138.19 138.14 128.00 146.32
    HREE 19.82 19.11 19.82 16.10 20.34
    LREE/HREE 7.08 7.23 6.97 7.95 7.19
    LaN/YbN 7.95 8.38 7.43 8.85 8.37
    δEu 0.86 0.88 0.84 0.84 0.84
    δCe 0.95 0.94 0.96 0.96 0.94
    Li 10.2 9.82 8.91 8.17 10.4
    Rb 33.3 33.3 34.6 24.5 33.90
    Cs 0.66 0.59 0.62 0.4 0.58
    Sr 778 745 708 656 827
    Ba 725 707 648 384 734
    V 232 224 234 193 234
    Sc 28.3 27.7 29.7 28.7 28.4
    Nb 7.17 6.9 6.79 6.3 7.38
    Ta 0.32 0.33 0.28 0.3 0.34
    Zr 116 121 89.2 89.9 162
    Hf 3.34 3.52 2.94 3.05 3.8
    Be 0.95 1.01 0.96 1.01 0.94
    Ga 23 22.4 22.7 20.1 23.1
    Ge 3.55 3.31 3.56 3 3.66
    U 0.28 0.34 0.26 0.46 0.34
    Th 1.39 1.26 0.75 1.87 1.76
    F 855 816 818 813 822
    注:Mg#=100×Mg2+/(Mg2++TFe2+);TFeO=FeO+0.8998×Fe2O3;主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    刘国军, 王建平.内蒙古镁铁质-超镁铁质岩型铜镍矿床成矿条件与找矿远景分析[J].地质与勘探, 2004, 40(1):17-20. http://d.old.wanfangdata.com.cn/Periodical/dzykt200401004

    [2]

    Peng R M, Zhai Y S, Li C S, et al.The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt:A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in An Arc Setting[J].Economic Geology, 2013, 108:1879-1888. doi: 10.2113/econgeo.108.8.1879

    [3]

    江思宏, 聂凤军, 刘妍, 等.内蒙古小南山-铂-铜-镍矿区辉长岩地球化学特征及成因[J].地球学报, 2003, 24(2):121-126. doi: 10.3321/j.issn:1006-3021.2003.02.005

    [4]

    党智财, 李俊建, 赵泽霖, 等.内蒙古四子王旗地区小南山辉长岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2016, 35(4):583-592. doi: 10.3969/j.issn.1671-2552.2016.04.014 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160414&flag=1

    [5]

    梁有彬.黄花滩铂矿地质特征及其找矿方向[J].地质与勘探, 1981, 12:17-21. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198112004.htm

    [6]

    朱建兴, 贾文艳, 李福占.内蒙古黄花滩铜、镍矿矿床地质特征及矿床成因[J].西部资源, 2014, 6:128-130. http://d.old.wanfangdata.com.cn/Periodical/xbzy201401074

    [7]

    李尚林, 袁华钵, 杨文瑞, 等.内蒙古乌拉特中旗克布钴镍矿地质特征[J].矿物岩石地球化学通报, 2011, 30(增刊):68-69. http://d.old.wanfangdata.com.cn/Conference/7680045

    [8]

    李鹏, 任陪林, 白启星, 等.乌拉特中旗克布矿区镍矿床岩石学特征及成因浅析[J].现代矿业, 2013, 530(6):65-66. doi: 10.3969/j.issn.1674-6082.2013.06.021

    [9]

    李志丹, 王佳营, 文思博, 等.内蒙古乌拉特中旗克布镍矿地质特征及超基性-基性岩LA-ICP-MS锆石U-Pb年龄[J].矿物学报, 2015, S1:130-131. http://d.old.wanfangdata.com.cn/Conference/9132928

    [10]

    马娟, 彭斌.内蒙古特颇格日图超基性岩体特征及成矿潜力研究[J].地质调查与研究, 2009, 33(3):175-180. doi: 10.3969/j.issn.1672-4135.2009.03.002

    [11]

    王楫, 李双庆, 王保良, 等.狼山-白云鄂博裂谷系[M].北京:北京大学出版社, 1992:1-132.

    [12]

    Xiao W, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J].Tectonics, 2003, 22(6):1069-1089.

    [13]

    李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪测定锆石U-Pb同位素年龄的研究[J].矿物岩石地球化学通报, 2009, 28(增刊):77.

    [14]

    李国占, 郝爽, 王家松, 等.浅谈多接收器电感耦合等离子体质谱仪的日常维护[J].地质调查与研究, 2019, 42(4):271-277. doi: 10.3969/j.issn.1672-4135.2019.04.007

    [15]

    Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].J.Petrol., 2010, 51(1/2):537-571. http://d.old.wanfangdata.com.cn/NSTLQK/10.1093-petrology-egp082/

    [16]

    Ludwig K R.Users manual for isoplot/Ex (rsv.3.0):A Geochronologica Toolkit for Microsoft excel:Berkrley Geochronology Center[J].Special Publication, 2003, 1a:1-55.

    [17]

    耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报, 2011, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20111004&flag=1

    [18]

    Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al.Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J].Chemical Geology, 2008, 255(1/2):231-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c7ffc35c732ec0b528043cdec4a2a69

    [19]

    Blichert T J, Albarede F.The Lu-Hf geochemistry of the chondrites and the evolution of the mantle-crust system[J].Earth and Planetary Science Letters, 1997, 148:243-258. doi: 10.1016/S0012-821X(97)00040-X

    [20]

    Griffin W L, Pearson N J, Belousova E A, et al.The Hf isotope composition of cratonic mantle:LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J].Geochimica et Cosmochimica Acta, 2000, 64:133-147. doi: 10.1016/S0016-7037(99)00343-9

    [21]

    Söderlund U, Patchett J P, Vervoort J D, et al.The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematic of Precambrian mafic intrusions[J].Earth and Planetary Science Letters, 2004, 219:311-324. doi: 10.1016/S0012-821X(04)00012-3

    [22]

    Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-464.

    [23]

    Middlemost E A K.Magmas and Magmatic Rocks[M].London:Longman, 1985:1-266.

    [24]

    Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [25]

    赵磊, 吴泰然, 罗红玲.内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义[J].岩石学报, 2011, 27(10):3071-3082. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110022

    [26]

    Peng R M, Li C S, Zhai Y S, et al.Geochronology, petrology and geochemistry of the Beiligaimiao magmatic sulfide deposit in a Paleozoic active continental margin, North China[J].Ore Geology Reviews, 2017, 90:607-617. doi: 10.1016/j.oregeorev.2017.05.004

    [27]

    Sklyarov E V, Gladkochub D P, Mazukabzov A M, et al.Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton[J].Precambrian Research, 2003, 122(1):359-376.

    [28]

    孔会磊, 李金超, 栗亚芝, 等.青海东昆仑东段加当辉长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质与勘探, 2017, 53(5):889-902. http://d.old.wanfangdata.com.cn/Periodical/dzykt201705006

    [29]

    Condie K C.Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary:Identification and significance[J].Lithos, 1989, 23(1):1-18.

    [30]

    Davidson J P.Deciphering mantle and crustal signatures in subduction zone magmatism[J].Washington Dc American Geophysical Union Geophysical Monograph, 1996, 96:251-262.

    [31]

    Anderson D L.Komatiites and picrites:evidence that the 'plume' source is depleted[J].Earth and Planetary Science Letters, 1994, 128(3/4):303-311. https://www.sciencedirect.com/science/article/pii/0012821X9490152X

    [32]

    Taylor S R, McLennan S M.The Continental Crust:Its composition and Evolution[M].London:Blackwell, 1985:57-72.

    [33]

    McCulloch M T, Gamble J A.Geochemical and geodynamical constraints on subduction zone magmatism[J].Earth and Plenetary Science Letters, 1991, 102(3):358-374. https://www.sciencedirect.com/science/article/abs/pii/0012821X9190029H

    [34]

    Hawkesworth C J, Gallagher K, Hergt J M, et al.Mantle and Slab Contribution in Arc Magmas[J].Annual Review of Earth & Planetary Sciences, 1993, 21:175-204. http://d.old.wanfangdata.com.cn/Periodical/dxqy-e201806016

    [35]

    Amelin Y, Lee D C, Halliday A N.Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J].Geochimica Et Cosmochimica Acta, 2000, 64(24):4205-4225. doi: 10.1016/S0016-7037(00)00493-2

    [36]

    Vervoort J D, Patchett P J, Gehrels G E, et al.Constraints on early Earth differentiation from hafnium and neodymium isotopes[J].Nature, 1996, 379(65/66):624-627. https://ui.adsabs.harvard.edu/abs/1996Natur.379..624V

    [37]

    王荃, 刘雪亚, 李锦轶.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社, 1991:50-60.

    [38]

    Sengör A M C, Natal'in B A, Burtman V S.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J].Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0

    [39]

    Windley B F, Alexeiev D, Xiao W, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J].Journal of the Geological Society, 2007, 164(12):31-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=407c8a0b623113b1dd6b69ee8fde6a21

    [40]

    李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版), 2009, 39(4):584-605. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200904002

    [41]

    Tang K.Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton[J].Tectonics, 1990, 9(2):249-260. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-TC009i002p00249/

    [42]

    邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社, 1991:1-135.

    [43]

    洪大卫, 黄怀曾, 肖宜君, 等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报, 1994, 68(3):219-230. doi: 10.3321/j.issn:0001-5717.1994.03.001

    [44]

    徐备, 陈斌.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J].中国科学(D辑), 1997, 27(3):227-232. http://www.cnki.com.cn/Article/CJFDTotal-JDXK199703005.htm

    [45]

    张晋瑞, 初航, 魏春景, 等.内蒙古中部构造混杂带晚古生代-早中生代变质基性岩的地球化学特征及其大地构造意义[J].岩石学报, 2014, 30(7):1935-1947. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407009

    [46]

    施光海, 苗来成, 张福勤, 等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报, 2004, 49(4):384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015

    [47]

    Zhu Y F.Permian volcanism in the Mongolian orogenic zone, northeast China:Geochemistry, magma sources and petrogenesis[J].Geological Magazine, 2001, 138(2):101-115. doi: 10.1017/S0016756801005210

    [48]

    Zhang X H, Zhang H F, Tang Y J, et al.Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J].Chemical Geology, 2008, 249(3/4):262-281. https://www.sciencedirect.com/science/article/abs/pii/S0009254108000053

    [49]

    Miao L C, Fan W M, Liu D Y, et al.Geochronology and geochemistry of the Hegenshan ophiolitic complex:implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J].Journal of Asian Earth Sciences, 2008, 32(5/6):348-370. https://www.sciencedirect.com/science/article/abs/pii/S1367912007002222

    [50]

    晨辰, 张志诚, 郭召杰, 等.内蒙古达茂旗满都拉地区早二叠世基性岩的年代学、地球化学及其地质意义[J].中国科学(地球科学), 2012, 42(3):343-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201203004

    中国建筑材料工业地质勘查中心内蒙古总队.内蒙古自治区达茂联合旗黄花滩铜镍铂矿区V号矿体资源储量核实报告.2005.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  808
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2019-01-08
修回日期:  2019-03-18
刊出日期:  2020-04-15

目录