Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in theMandu area, southern Da Hinggan Mountains
-
摘要:
对位于兴安地块的德勒哈达岩体进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学特征研究,探讨岩石成因及地质意义。岩体由细粒斑状二长花岗岩、细中粒二长花岗岩2种岩性组成,锆石U-Pb定年结果分别为141.2±1.6 Ma和134.0±1.9 Ma,显示岩体为早白垩世岩浆活动的产物。二者的地球化学特征相似,显示高硅、高分异指数、富钾、(弱)过铝质的特点,均富集Rb、Th、K等大离子亲石元素(LILE)及轻稀土元素(LREE),强烈亏损Ba、Sr、P、Ti元素,为高钾钙碱性系列的高分异I型花岗岩;具明显的壳源岩浆的特征。综合分析岩体形成于碰撞后的伸展环境,是古太平洋板块俯冲过程的岩浆记录。
Abstract:The monzonitic granite pluton is located in the Xing'an block, southern Da Hinggan Mountains. The rocks are composed of fine-grained porphyry monzonitic granite and fine-medium-grained monzonitic granite. The zircon U-Pb ages are 141.2±1.6 Ma and 134.0±1.9 Ma, indicating that they are the product of magmatic activity in the Early Cretaceous. Their geochemical characteristics suggest that they are highly differentiated I-type granites of high potassium calc-alkaline series. They are rich in large ion lithophile elements, such as Rb, Th, K and light rare earth elements (LREE), and strongly depleted in Ba, Sr, P and Ti elements. These features are similar to geochemical characteristics of crustal granite.They were formed in a post-collision extensional environment and serve as a magmatic record of the subduction of the Paleo-Pacific Plate.
-
Key words:
- Mandu area /
- I-type granite /
- geochemistry /
- petrogenesis
-
-
图 6 二长花岗岩稀土元素球粒陨石标准化配分模式(a)及原始地幔标准化蛛网图(b)[16]
Figure 6.
图 7 二长花岗岩岩石成因相关图解[21]
Figure 7.
图 8 二长花岗岩Sr-Ba(a)和La-(La/Yb)N关系图(b)[25]
Figure 8.
图 9 二长花岗岩构造环境判别图解[27]
Figure 9.
表 1 二长花岗岩岩体LA-ICP-MS锆石U-Th-Pb定年结果
Table 1. Results of LA-ICP-MS zircon U-Th-Pb dating of the monzonitic granite
测点号 含量/10-6 Th/
U同位素比值 年龄/Ma Pb Th U 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 样品编号:TW-22,细中粒二长花岗岩 1 6 111 209 0.53 0.0500 0.0047 0.154 0.014 0.0223 0.0004 194.2 204.6 145.3 12.3 142.3 2.8 2 12 295 433 0.68 0.0491 0.0025 0.148 0.007 0.0219 0.0003 154.3 114.4 140.4 6.2 139.5 2.0 3 8 143 317 0.45 0.0493 0.0024 0.150 0.007 0.0220 0.0003 163.7 110.2 141.8 6.0 140.5 2.0 4 4 86 133 0.65 0.0489 0.0035 0.149 0.010 0.0221 0.0004 143.0 159.2 140.9 9.0 140.7 2.4 5 16 209 616 0.34 0.0485 0.0017 0.148 0.004 0.0221 0.0003 123.5 79.4 139.9 3.9 140.8 1.7 6 16 141 647 0.22 0.0507 0.0023 0.154 0.006 0.0220 0.0003 228.7 102.3 145.4 5.7 140.3 1.9 7 8 129 321 0.40 0.0495 0.0024 0.153 0.007 0.0224 0.0003 169.3 111.5 144.3 6.2 142.7 1.9 8 10 161 380 0.42 0.0498 0.0023 0.153 0.007 0.0223 0.0003 184.8 105.5 145.4 5.7 142.2 2.0 9 6 102 238 0.43 0.0502 0.0031 0.152 0.009 0.0220 0.0004 203.4 136 143.9 7.7 140.3 2.3 10 33 276 1309 0.21 0.0554 0.002 0.168 0.005 0.0220 0.0003 429.8 77.9 157.8 4.5 140.2 1.8 11 13 217 502 0.43 0.0500 0.0033 0.152 0.010 0.0221 0.0004 193.1 145.9 144.0 8.4 141.0 2.2 12 14 464 448 1.03 0.0493 0.0028 0.151 0.008 0.0222 0.0003 160.9 126.1 142.8 7.1 141.7 1.9 13 19 154 739 0.21 0.0490 0.002 0.153 0.006 0.0227 0.0003 147.7 91.4 144.9 4.9 144.8 1.9 14 14 318 539 0.59 0.0493 0.0027 0.150 0.008 0.0221 0.0003 160.1 122.5 141.9 6.7 140.8 2.1 15 45 255 1813 0.14 0.0504 0.0043 0.154 0.013 0.0222 0.0003 212.8 187.3 145.5 11.3 141.4 2.1 16 5 88 190 0.47 0.0499 0.0037 0.154 0.011 0.0223 0.0004 190.6 162 145.1 9.5 142.4 2.5 17 10 158 388 0.41 0.0500 0.0017 0.153 0.004 0.0222 0.0003 192.8 75.1 144.3 3.8 141.4 1.7 样品编号:TW-37,细粒斑状二长花岗岩 1 9 137 326 0.42 0.0488 0.0019 0.150 0.004 0.0223 0.0003 136 36 142 4 142 2 2 13 246 530 0.46 0.0494 0.0021 0.139 0.006 0.0203 0.0003 166 100 132 5 130 2 3 9 165 356 0.46 0.0503 0.0027 0.145 0.007 0.0209 0.0004 207 72 137 6 133 2 4 9 177 334 0.53 0.0487 0.0017 0.148 0.003 0.0221 0.0003 131 26 140 3 141 2 5 8 152 294 0.52 0.0535 0.002 0.167 0.005 0.0226 0.0004 348 33 157 4 144 2 6 8 190 299 0.64 0.0490 0.0017 0.142 0.003 0.0210 0.0003 146 27 135 3 134 2 7 9 167 352 0.47 0.0483 0.0027 0.131 0.007 0.0196 0.0003 112 128 125 6 125 2 8 11 232 424 0.55 0.0488 0.0018 0.143 0.004 0.0212 0.0003 138 33 135 3 135 2 9 8 169 293 0.58 0.0530 0.0021 0.154 0.004 0.0211 0.0003 328 36 145 4 134 1 10 7 143 275 0.52 0.0486 0.0017 0.144 0.003 0.0214 0.0003 128 29 136 3 137 2 11 7 151 251 0.60 0.0488 0.0018 0.151 0.004 0.0224 0.0003 138 29 142 3 143 2 12 17 347 647 0.54 0.0488 0.0016 0.148 0.003 0.0219 0.0003 139 21 140 3 140 2 13 32 629 1362 0.46 0.0516 0.0022 0.139 0.006 0.0196 0.0003 267 102 132 5 125 2 14 11 351 387 0.91 0.0499 0.0018 0.140 0.003 0.0204 0.0003 192 30 133 3 130 2 15 9 156 322 0.48 0.0494 0.0017 0.150 0.003 0.0220 0.0003 164 27 142 3 140 2 16 22 501 874 0.57 0.0548 0.0031 0.147 0.008 0.0195 0.0003 402 130 139 7 125 2 17 8 183 296 0.62 0.0535 0.0021 0.156 0.005 0.0212 0.0003 351 38 147 4 135 2 18 8 190 333 0.57 0.0545 0.0022 0.153 0.005 0.0204 0.0003 393 39 145 4 130 2 19 8 176 298 0.59 0.0494 0.0028 0.153 0.008 0.0225 0.0004 165 127 145 7 143 2 20 8 232 295 0.79 0.0497 0.0029 0.145 0.007 0.0212 0.0004 180 84 138 7 135 2 21 9 338 326 1.04 0.0498 0.0035 0.136 0.009 0.0197 0.0004 185 109 129 8 126 3 22 8 155 345 0.45 0.0498 0.0018 0.135 0.003 0.0197 0.0003 184 30 129 3 126 2 23 7 128 253 0.51 0.0489 0.0021 0.144 0.005 0.0214 0.0004 144 49 137 4 136 2 24 9 173 351 0.49 0.0486 0.0019 0.137 0.004 0.0204 0.0003 129 40 130 4 130 2 注:测试单位为西北大学大陆动力学国家重点实验室 表 2 二长花岗岩主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth elements compositions of the monzonitic granite
元素 细粒斑状二长花岗岩 细中粒二长花岗岩 4006 4007 4008 4009 2024 2016 2020 2023 2007 SiO2 73.92 77.57 76.43 77.02 77.04 77.24 77.21 77.77 75.95 TiO2 0.35 0.13 0.21 0.15 0.17 0.22 0.10 0.11 0.20 Al2O3 13.25 12.24 12.49 12.43 12.28 11.45 12.31 11.52 12.43 Fe2O3 2.20 0.44 0.73 0.74 0.76 1.12 0.61 0.71 1.80 FeO 0.17 0.15 0.37 0.10 0.28 0.18 0.10 0.12 0.08 MnO 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 MgO 0.36 0.17 0.27 0.19 0.15 0.28 0.09 0.08 0.25 CaO 1.37 0.11 0.46 0.23 0.34 0.79 0.30 0.32 0.20 Na2O 2.41 3.28 3.23 3.34 3.11 2.07 3.89 3.52 2.65 K2O 4.13 5.22 5.10 4.99 4.93 5.62 4.65 5.01 5.65 P2O5 0.13 0.05 0.07 0.07 0.04 0.09 0.03 0.01 0.07 CO2 0.24 0.02 0.04 0.08 0.02 0.04 0.02 0.02 0.04 H2O- 0.41 0.36 0.44 0.48 0.29 0.39 0.27 0.49 0.47 H2O+ 1.30 0.50 0.48 0.55 0.76 0.75 0.35 0.65 0.67 DI 87.32 97.39 94.95 96.45 95.44 93.35 97.12 97.59 94.60 A/CNK 1.21 1.09 1.07 1.10 1.11 1.05 1.03 0.98 1.14 σ43 1.38 2.09 2.07 2.04 1.89 1.72 2.13 2.09 2.09 Na2O+K2O 6.54 8.50 8.33 8.33 8.04 7.69 8.54 8.53 8.30 K2O/Na2O 1.71 1.59 1.58 1.49 1.59 2.71 1.20 1.42 2.13 TFeO 2.14 0.54 1.02 0.76 0.96 1.18 0.64 0.75 1.68 TFeO/MgO 5.94 3.18 3.77 3.99 6.37 4.20 7.14 9.39 6.72 Rb 439 445.60 399.60 399.70 381.90 457.38 475.10 486.80 374.75 Nb 22.2 19.11 14.89 27.11 16.60 16.12 30.19 21.38 13.85 Ta 3.61 1.69 3.04 4.32 3.16 3.25 4.31 4.42 2.78 Th 29.7 37.09 41.89 39.42 39.89 26.63 35.34 16.69 27.65 Ba 373 48.50 128.70 57.20 101.83 119.10 23.65 17.09 263.50 Sr 81.4 32.20 63.50 31.70 36.64 46.10 13.38 11.39 70.90 Zr 150 103.90 122.90 117.20 129.20 118.60 109.00 57.20 111.70 Hf 5.00 3.46 4.10 3.91 5.66 3.95 5.92 2.69 3.72 La 27.8 27.45 48.10 29.10 43.50 32.21 24.62 9.59 14.30 Ce 56.2 59.31 96.97 66.18 85.82 65.41 45.05 19.39 24.65 Pr 7.42 6.93 11.58 7.02 10.43 8.47 4.30 1.91 3.43 Nd 29.4 25.27 42.42 23.97 36.14 33.47 12.05 6.22 13.53 Sm 7.52 5.60 9.02 5.15 7.32 8.04 2.07 1.29 3.44 Eu 0.74 0.24 0.52 0.24 0.48 0.56 0.11 0.12 0.51 Gd 7.71 4.94 7.91 4.93 6.10 8.50 1.82 1.22 4.49 Tb 1.42 0.93 1.36 0.95 1.00 1.52 0.38 0.30 0.98 Dy 8.71 6.28 8.18 6.68 5.20 9.69 2.55 2.52 7.07 Ho 1.59 1.23 1.54 1.36 0.98 1.86 0.62 0.65 1.50 Er 4.68 4.02 4.78 4.56 3.03 5.56 2.51 2.57 4.91 Tm 0.75 0.75 0.85 0.88 0.55 0.94 0.57 0.54 0.89 Yb 4.18 4.57 5.00 5.35 3.68 5.54 4.59 3.92 5.32 Lu 0.60 0.69 0.80 0.84 0.53 0.84 0.78 0.55 0.86 Y 37.9 32.63 42.75 41.04 27.70 51.87 20.60 19.07 40.05 ΣREE 158.72 148.21 239.01 157.20 204.76 182.63 102.01 50.79 85.88 LREE 129.08 124.81 208.60 131.66 183.69 148.17 88.19 38.52 59.86 HREE 29.64 23.41 30.41 25.54 21.07 34.46 13.82 12.27 26.02 L/H 4.35 5.33 6.86 5.16 8.72 4.30 6.38 3.14 2.30 (La/Yb)N 4.77 4.30 6.91 3.91 8.48 4.17 3.85 1.76 1.93 (La/Sm)N 2.39 3.16 3.44 3.65 3.84 2.59 7.68 4.80 2.68 (Gd/Yb)N 1.53 0.89 1.31 0.76 1.37 1.27 0.33 0.26 0.70 δEu 0.29 0.14 0.18 0.14 0.21 0.20 0.16 0.28 0.39 TZr/℃ 792 760 771 770 780 769 758 704 773 Rb/Sr 5.39 13.84 6.29 12.61 10.42 9.92 35.51 42.74 5.29 注:测试单位为武汉综合岩矿测试中心;主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J].Tectonics, 2003, 2(6):1069-1089. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312004025.htm
[2] 徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001
[3] 李锦轶, 莫申国, 和政军, 等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-168. http://d.old.wanfangdata.com.cn/Periodical/dxqy200403017
[4] Wang T, Zheng Y D, Zhang J J, et al.Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J].Tectonics, 2011, 30(6):7-33. http://www.researchgate.net/publication/235247287_Pattern_and_kinematic_polarity_of_late_Mesozoic_extension_in_continental_NE_Asia_Perspectives_from_metamorphic_core_complexes?ev=auth_pub
[5] 董树文, 张岳桥, 龙长兴.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报, 1999, 15(2):181-189. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200711001
[6] 翟明国.华北克拉通中生代破坏前的岩石圈和地幔[J].岩石学报, 2008, 24(10):2185-2204. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200810001.htm
[7] 吴福元, 孙德有, 林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 2007, 81(11):1449-1461. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902003
[8] 林强, 葛文春, 吴福元, 等.大兴安岭中生代花岗岩的地球化学[J].岩石学报, 2004, 20(3):403-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403004
[9] 葛文春, 吴福元, 周长勇, 等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报, 2005, 21(3):749-762. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503015
[10] 王守光, 黄占起, 苏新旭, 等.一条值得重视的跨国境成矿带:南戈壁-东乌旗铜多金属成矿带[J].地学前缘, 2004, 11(1):249-255. http://d.old.wanfangdata.com.cn/Periodical/dxqy200401022
[11] 黄再兴, 王治华, 常春郊, 等.内蒙东乌珠穆沁旗成矿带多金属成矿规律与找矿方向[J].地质调查与研究, 2013, 36(3):205-212. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201303008
[12] Wu F Y, Yang J H, Sun D Y, et al, .The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China[J].Jouranl of Asian Earth Sciences, 2005, 30(34):542-556. https://www.sciencedirect.com/science/article/abs/pii/S136791200700034X
[13] Ludwig K R.Isoplot3.0:A geochronological toolkit for Microsoft Excel[M].Berkeley Geochron Centre Special Publication, 2003, (4):1-70.
[14] Morrison W G.Characteristics and tectonic setting of the shoshonite rock association[J].Lithos, 1980, 13(1):97-108. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0024-4937(80)90067-5/
[15] Maniar P D, Piccoli.Tectonic discrimination of granitoids[J].The Geological Society of America Bulletin, 1989, 101(5):635-643. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f3a2707d47b158c5d38108d58f763058
[16] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Ocean Basins[J].Geological Society of London, Specical Publications, 1989, 42(1): 313-345.
[17] 毛景文, 谢桂青, 张作衡, 等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报, 2005, 21(1):169-188. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501017
[18] 周振华, 吕林素, 杨永军, 等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年龄和岩石地球化学的制约[J].岩石学报, 2010, 26(12):3521-3537. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012006
[19] Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences, 2011, 41(1):1-30. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.jseaes.2010.11.014/
[20] Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contrib. Miner. Petrol., 1987, 95:407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007
[21] Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00374895/
[22] Watson E B, Harrison T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magmatypes[J].Earth Planet. Sci. Lett., 1983, 64(2):295-304. https://www.sciencedirect.com/science/article/abs/pii/0012821X8390211X
[23] King P L, White A J R, Chappell B W.Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J].Journal of Petrology, 1997, 38(3):371-391. http://d.old.wanfangdata.com.cn/NSTLQK/10.1093-petroj-38.3.371/
[24] Chappell B W.Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46:535-551. https://www.sciencedirect.com/science/article/pii/S0024493798000863
[25] Wu F Y, Jahn B M, Wilder S A, et al.Highly fractionated I-type granites in NE China:Geochronology and petrogenesis[J]Lithos, 2003, 66(3/4):241-273. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0024-4937(02)00222-0/
[26] 高山, 骆庭川, 张本仁, 等.中国东部地壳的结构和组成[J].中国科学(D辑), 1999, 29(3):204-213. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199903002
[27] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005685327
[28] 翟明国, 朱日祥, 刘建明, 等.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑), 2003, 33(10):913-920. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200310001
① 山西省地质调查院.1: 5万额仁高壁公社幅等四幅区域地质调查报告.2015.
-