大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因

李猛兴. 大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因[J]. 地质通报, 2020, 39(2-3): 224-233.
引用本文: 李猛兴. 大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因[J]. 地质通报, 2020, 39(2-3): 224-233.
LI Mengxing. Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in theMandu area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 2020, 39(2-3): 224-233.
Citation: LI Mengxing. Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in theMandu area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 2020, 39(2-3): 224-233.

大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因

  • 基金项目:
    中国地质调查局项目《1:5万额仁高壁公社幅(L50E011018)等四幅区调》(编号:1212011120712)
详细信息
    作者简介: 李猛兴(1985-), 男, 硕士, 工程师, 从事矿产勘查工作。E-mail:llmmxx77@163.com
  • 中图分类号: P534.53;P588.12+1

Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in theMandu area, southern Da Hinggan Mountains

  • 对位于兴安地块的德勒哈达岩体进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学特征研究,探讨岩石成因及地质意义。岩体由细粒斑状二长花岗岩、细中粒二长花岗岩2种岩性组成,锆石U-Pb定年结果分别为141.2±1.6 Ma和134.0±1.9 Ma,显示岩体为早白垩世岩浆活动的产物。二者的地球化学特征相似,显示高硅、高分异指数、富钾、(弱)过铝质的特点,均富集Rb、Th、K等大离子亲石元素(LILE)及轻稀土元素(LREE),强烈亏损Ba、Sr、P、Ti元素,为高钾钙碱性系列的高分异I型花岗岩;具明显的壳源岩浆的特征。综合分析岩体形成于碰撞后的伸展环境,是古太平洋板块俯冲过程的岩浆记录。

  • 加载中
  • 图 1  兴蒙造山带东段大地构造略图(a)(据参考文献[12]修改)和二长花岗岩岩体地质简图(b)

    Figure 1. 

    图 2  二长花岗岩岩体手标本及镜下照片

    Figure 2. 

    图 3  二长花岗岩岩体锆石阴极发光(CL)图像

    Figure 3. 

    图 4  二长花岗岩岩体锆石U-Pb谐和图

    Figure 4. 

    图 5  二长花岗岩SiO2-K2O图(a)[14]及A/CNK-A/NK图(b)[15]

    Figure 5. 

    图 6  二长花岗岩稀土元素球粒陨石标准化配分模式(a)及原始地幔标准化蛛网图(b)[16]

    Figure 6. 

    图 7  二长花岗岩岩石成因相关图解[21]

    Figure 7. 

    图 8  二长花岗岩Sr-Ba(a)和La-(La/Yb)N关系图(b)[25]

    Figure 8. 

    图 9  二长花岗岩构造环境判别图解[27]

    Figure 9. 

    表 1  二长花岗岩岩体LA-ICP-MS锆石U-Th-Pb定年结果

    Table 1.  Results of LA-ICP-MS zircon U-Th-Pb dating of the monzonitic granite

    测点号含量/10-6Th/
    U
    同位素比值年龄/Ma
    PbThU207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    样品编号:TW-22,细中粒二长花岗岩
    161112090.530.05000.00470.1540.0140.02230.0004194.2204.6145.312.3142.32.8
    2122954330.680.04910.00250.1480.0070.02190.0003154.3114.4140.46.2139.52.0
    381433170.450.04930.00240.1500.0070.02200.0003163.7110.2141.86.0140.52.0
    44861330.650.04890.00350.1490.0100.02210.0004143.0159.2140.99.0140.72.4
    5162096160.340.04850.00170.1480.0040.02210.0003123.579.4139.93.9140.81.7
    6161416470.220.05070.00230.1540.0060.02200.0003228.7102.3145.45.7140.31.9
    781293210.400.04950.00240.1530.0070.02240.0003169.3111.5144.36.2142.71.9
    8101613800.420.04980.00230.1530.0070.02230.0003184.8105.5145.45.7142.22.0
    961022380.430.05020.00310.1520.0090.02200.0004203.4136143.97.7140.32.3
    103327613090.210.05540.0020.1680.0050.02200.0003429.877.9157.84.5140.21.8
    11132175020.430.05000.00330.1520.0100.02210.0004193.1145.9144.08.4141.02.2
    12144644481.030.04930.00280.1510.0080.02220.0003160.9126.1142.87.1141.71.9
    13191547390.210.04900.0020.1530.0060.02270.0003147.791.4144.94.9144.81.9
    14143185390.590.04930.00270.1500.0080.02210.0003160.1122.5141.96.7140.82.1
    154525518130.140.05040.00430.1540.0130.02220.0003212.8187.3145.511.3141.42.1
    165881900.470.04990.00370.1540.0110.02230.0004190.6162145.19.5142.42.5
    17101583880.410.05000.00170.1530.0040.02220.0003192.875.1144.33.8141.41.7
    样品编号:TW-37,细粒斑状二长花岗岩
    191373260.420.04880.00190.1500.0040.02230.00031363614241422
    2132465300.460.04940.00210.1390.0060.02030.000316610013251302
    391653560.460.05030.00270.1450.0070.02090.00042077213761332
    491773340.530.04870.00170.1480.0030.02210.00031312614031412
    581522940.520.05350.0020.1670.0050.02260.00043483315741442
    681902990.640.04900.00170.1420.0030.02100.00031462713531342
    791673520.470.04830.00270.1310.0070.01960.000311212812561252
    8112324240.550.04880.00180.1430.0040.02120.00031383313531352
    981692930.580.05300.00210.1540.0040.02110.00033283614541341
    1071432750.520.04860.00170.1440.0030.02140.00031282913631372
    1171512510.600.04880.00180.1510.0040.02240.00031382914231432
    12173476470.540.04880.00160.1480.0030.02190.00031392114031402
    133262913620.460.05160.00220.1390.0060.01960.000326710213251252
    14113513870.910.04990.00180.1400.0030.02040.00031923013331302
    1591563220.480.04940.00170.1500.0030.02200.00031642714231402
    16225018740.570.05480.00310.1470.0080.01950.000340213013971252
    1781832960.620.05350.00210.1560.0050.02120.00033513814741352
    1881903330.570.05450.00220.1530.0050.02040.00033933914541302
    1981762980.590.04940.00280.1530.0080.02250.000416512714571432
    2082322950.790.04970.00290.1450.0070.02120.00041808413871352
    2193383261.040.04980.00350.1360.0090.01970.000418510912981263
    2281553450.450.04980.00180.1350.0030.01970.00031843012931262
    2371282530.510.04890.00210.1440.0050.02140.00041444913741362
    2491733510.490.04860.00190.1370.0040.02040.00031294013041302
    注:测试单位为西北大学大陆动力学国家重点实验室
    下载: 导出CSV

    表 2  二长花岗岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace and rare earth elements compositions of the monzonitic granite

    元素细粒斑状二长花岗岩细中粒二长花岗岩
    400640074008400920242016202020232007
    SiO273.9277.5776.4377.0277.0477.2477.2177.7775.95
    TiO20.350.130.210.150.170.220.100.110.20
    Al2O313.2512.2412.4912.4312.2811.4512.3111.5212.43
    Fe2O32.200.440.730.740.761.120.610.711.80
    FeO0.170.150.370.100.280.180.100.120.08
    MnO0.020.000.010.000.010.010.010.010.02
    MgO0.360.170.270.190.150.280.090.080.25
    CaO1.370.110.460.230.340.790.300.320.20
    Na2O2.413.283.233.343.112.073.893.522.65
    K2O4.135.225.104.994.935.624.655.015.65
    P2O50.130.050.070.070.040.090.030.010.07
    CO20.240.020.040.080.020.040.020.020.04
    H2O-0.410.360.440.480.290.390.270.490.47
    H2O+1.300.500.480.550.760.750.350.650.67
    DI87.3297.3994.9596.4595.4493.3597.1297.5994.60
    A/CNK1.211.091.071.101.111.051.030.981.14
    σ431.382.092.072.041.891.722.132.092.09
    Na2O+K2O6.548.508.338.338.047.698.548.538.30
    K2O/Na2O1.711.591.581.491.592.711.201.422.13
    TFeO2.140.541.020.760.961.180.640.751.68
    TFeO/MgO5.943.183.773.996.374.207.149.396.72
    Rb439445.60399.60399.70381.90457.38475.10486.80374.75
    Nb22.219.1114.8927.1116.6016.1230.1921.3813.85
    Ta3.611.693.044.323.163.254.314.422.78
    Th29.737.0941.8939.4239.8926.6335.3416.6927.65
    Ba37348.50128.7057.20101.83119.1023.6517.09263.50
    Sr81.432.2063.5031.7036.6446.1013.3811.3970.90
    Zr150103.90122.90117.20129.20118.60109.0057.20111.70
    Hf5.003.464.103.915.663.955.922.693.72
    La27.827.4548.1029.1043.5032.2124.629.5914.30
    Ce56.259.3196.9766.1885.8265.4145.0519.3924.65
    Pr7.426.9311.587.0210.438.474.301.913.43
    Nd29.425.2742.4223.9736.1433.4712.056.2213.53
    Sm7.525.609.025.157.328.042.071.293.44
    Eu0.740.240.520.240.480.560.110.120.51
    Gd7.714.947.914.936.108.501.821.224.49
    Tb1.420.931.360.951.001.520.380.300.98
    Dy8.716.288.186.685.209.692.552.527.07
    Ho1.591.231.541.360.981.860.620.651.50
    Er4.684.024.784.563.035.562.512.574.91
    Tm0.750.750.850.880.550.940.570.540.89
    Yb4.184.575.005.353.685.544.593.925.32
    Lu0.600.690.800.840.530.840.780.550.86
    Y37.932.6342.7541.0427.7051.8720.6019.0740.05
    ΣREE158.72148.21239.01157.20204.76182.63102.0150.7985.88
    LREE129.08124.81208.60131.66183.69148.1788.1938.5259.86
    HREE29.6423.4130.4125.5421.0734.4613.8212.2726.02
    L/H4.355.336.865.168.724.306.383.142.30
    (La/Yb)N4.774.306.913.918.484.173.851.761.93
    (La/Sm)N2.393.163.443.653.842.597.684.802.68
    (Gd/Yb)N1.530.891.310.761.371.270.330.260.70
    δEu0.290.140.180.140.210.200.160.280.39
    TZr/℃792760771770780769758704773
    Rb/Sr5.3913.846.2912.6110.429.9235.5142.745.29
    注:测试单位为武汉综合岩矿测试中心;主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J].Tectonics, 2003, 2(6):1069-1089. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312004025.htm

    [2]

    徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001

    [3]

    李锦轶, 莫申国, 和政军, 等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-168. http://d.old.wanfangdata.com.cn/Periodical/dxqy200403017

    [4]

    Wang T, Zheng Y D, Zhang J J, et al.Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J].Tectonics, 2011, 30(6):7-33. http://www.researchgate.net/publication/235247287_Pattern_and_kinematic_polarity_of_late_Mesozoic_extension_in_continental_NE_Asia_Perspectives_from_metamorphic_core_complexes?ev=auth_pub

    [5]

    董树文, 张岳桥, 龙长兴.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报, 1999, 15(2):181-189. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200711001

    [6]

    翟明国.华北克拉通中生代破坏前的岩石圈和地幔[J].岩石学报, 2008, 24(10):2185-2204. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200810001.htm

    [7]

    吴福元, 孙德有, 林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 2007, 81(11):1449-1461. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902003

    [8]

    林强, 葛文春, 吴福元, 等.大兴安岭中生代花岗岩的地球化学[J].岩石学报, 2004, 20(3):403-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403004

    [9]

    葛文春, 吴福元, 周长勇, 等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报, 2005, 21(3):749-762. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503015

    [10]

    王守光, 黄占起, 苏新旭, 等.一条值得重视的跨国境成矿带:南戈壁-东乌旗铜多金属成矿带[J].地学前缘, 2004, 11(1):249-255. http://d.old.wanfangdata.com.cn/Periodical/dxqy200401022

    [11]

    黄再兴, 王治华, 常春郊, 等.内蒙东乌珠穆沁旗成矿带多金属成矿规律与找矿方向[J].地质调查与研究, 2013, 36(3):205-212. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201303008

    [12]

    Wu F Y, Yang J H, Sun D Y, et al, .The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China[J].Jouranl of Asian Earth Sciences, 2005, 30(34):542-556. https://www.sciencedirect.com/science/article/abs/pii/S136791200700034X

    [13]

    Ludwig K R.Isoplot3.0:A geochronological toolkit for Microsoft Excel[M].Berkeley Geochron Centre Special Publication, 2003, (4):1-70.

    [14]

    Morrison W G.Characteristics and tectonic setting of the shoshonite rock association[J].Lithos, 1980, 13(1):97-108. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0024-4937(80)90067-5/

    [15]

    Maniar P D, Piccoli.Tectonic discrimination of granitoids[J].The Geological Society of America Bulletin, 1989, 101(5):635-643. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f3a2707d47b158c5d38108d58f763058

    [16]

    Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Ocean Basins[J].Geological Society of London, Specical Publications, 1989, 42(1): 313-345.

    [17]

    毛景文, 谢桂青, 张作衡, 等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报, 2005, 21(1):169-188. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501017

    [18]

    周振华, 吕林素, 杨永军, 等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年龄和岩石地球化学的制约[J].岩石学报, 2010, 26(12):3521-3537. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201012006

    [19]

    Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences, 2011, 41(1):1-30. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.jseaes.2010.11.014/

    [20]

    Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contrib. Miner. Petrol., 1987, 95:407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007

    [21]

    Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00374895/

    [22]

    Watson E B, Harrison T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magmatypes[J].Earth Planet. Sci. Lett., 1983, 64(2):295-304. https://www.sciencedirect.com/science/article/abs/pii/0012821X8390211X

    [23]

    King P L, White A J R, Chappell B W.Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J].Journal of Petrology, 1997, 38(3):371-391. http://d.old.wanfangdata.com.cn/NSTLQK/10.1093-petroj-38.3.371/

    [24]

    Chappell B W.Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46:535-551. https://www.sciencedirect.com/science/article/pii/S0024493798000863

    [25]

    Wu F Y, Jahn B M, Wilder S A, et al.Highly fractionated I-type granites in NE China:Geochronology and petrogenesis[J]Lithos, 2003, 66(3/4):241-273. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0024-4937(02)00222-0/

    [26]

    高山, 骆庭川, 张本仁, 等.中国东部地壳的结构和组成[J].中国科学(D辑), 1999, 29(3):204-213. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199903002

    [27]

    Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005685327

    [28]

    翟明国, 朱日祥, 刘建明, 等.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑), 2003, 33(10):913-920. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200310001

    山西省地质调查院.1: 5万额仁高壁公社幅等四幅区域地质调查报告.2015.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  502
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-12-11
修回日期:  2019-03-28
刊出日期:  2020-03-15

目录