Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet
-
摘要:
拉果错蛇绿岩是青藏高原中部狮泉河-纳木错-嘉黎缝合带中出露最完整的蛇绿岩组合之一,对恢复和反演该缝合带代表的洋盆演化及洋盆性质具有重要的约束意义。以拉果错蛇绿岩中的辉长岩、辉绿岩、辉绿玢岩和斜长花岗岩为研究对象,在岩石学、锆石U-Pb年代学和全岩地球化学研究的基础上,探讨了拉果错蛇绿岩的成因和构造背景,以此约束狮泉河-纳木错-嘉黎缝合带的性质。结果显示,斜长花岗岩锆石U-Pb年龄为167.8±1.7 Ma(n=24,MSWD=0.22),表明拉果错蛇绿岩形成于晚侏罗世。地球化学特征显示,拉果错蛇绿岩中辉长岩与辉绿岩端元均兼具岛弧与富集洋中脊玄武岩的地球化学性质,指示其形成于大陆弧后盆地环境。
Abstract:Lhaguo Tso ophiolite is one of the most complete ophiolite combinations in the Shiquanhe-Namco-Lhari suture zone in central Tibetan Plateau, and has great significance for restoring the evolution of ocean.This paper reports petrology, zircon U-Pb chronology and geochemical characteristics of the diabases and plagiogranites to confirm the genesis and tectonic setting of Lhaguo Tso ophiolites.The zircon U-Pb dating of plagiogranite yielded an age of 167.8±1.7 Ma (n=24, MSWD=0.22), which indicates that the Lhaguo Tso ophiolite was formed in Late Jurassic.Geochemically, the gabbros and the diabases are similar to the island arc rocks and E-MORB, suggesting a continental back-arc basin environment setting.
-
Key words:
- Tibetan Plateau /
- Lhaguo Tso ophiolite /
- Late Jurassic /
- back-arc basin /
- zircon U-Pb dating
-
-
图 7 Cr-Ni图解[35]
Figure 7.
图 8 Ti/1000-V图解(a)和Y/15-La/10-Nb/8三角图解(b)[36]
Figure 8.
表 1 拉果错蛇绿岩的全岩主量、微量和稀土元素分析结果
Table 1. Major, trace and rare earth elements data for the Lhaguo Tso ophiolite
岩性
样号斜长花岗岩 辉长岩 辉绿岩 辉绿(玢)岩 PD003Gs14 PD003Gs18 2145Gs 1447Gs 1754Gs1 1758Gs1 1777Gs PM003Gs36 PM003Gs38 1195Gs1 1908Gs4 1910Gs 1194Gs 1908Gs1 1910Gs5 1438Gs5 1442Gs3 SiO2 71.90 72.65 73.18 47.89 49.61 49.79 53.19 48.00 52.34 53.17 52.07 49.64 52.62 47.04 50.80 49.56 50.59 Al2O3 13.91 13.25 13.01 16.92 14.74 17.38 13.23 15.70 14.02 16.08 16.93 16.90 16.08 16.59 19.50 15.35 16.60 Fe2O3 1.03 0.91 2.89 2.25 2.03 2.14 3.10 2.31 2.27 1.25 2.92 1.66 0.97 0.98 1.54 3.20 2.28 FeO 1.65 1.09 0.53 5.03 7.92 8.11 10.08 7.15 6.60 8.16 7.08 7.94 9.30 6.78 5.66 7.18 5.02 TFe2O3 2.86 2.12 3.47 7.84 10.83 11.15 14.30 10.25 9.60 10.32 10.79 10.48 11.30 8.51 7.83 11.18 7.86 CaO 2.01 2.47 3.68 11.89 7.67 9.09 5.30 10.66 9.19 3.03 7.15 7.28 7.64 10.19 7.75 9.98 4.95 MgO 1.13 1.15 0.25 8.21 8.42 6.30 4.72 7.74 6.70 6.81 4.65 5.61 4.46 9.72 3.84 5.30 8.18 K2O 0.09 0.04 0.06 0.60 0.39 0.60 0.12 0.50 0.47 0.22 1.58 1.05 0.92 1.38 0.55 0.75 2.10 Na2O 6.44 6.34 4.89 2.29 3.66 2.48 4.59 2.93 4.07 5.61 2.48 4.37 4.23 1.59 4.99 3.94 3.90 TiO2 0.40 0.40 0.18 0.54 0.97 0.63 1.55 0.79 0.89 0.69 0.81 0.60 0.69 0.73 0.49 1.39 0.72 P2O5 0.06 0.06 0.04 0.04 0.06 0.03 0.13 0.05 0.06 0.03 0.06 0.03 0.03 0.10 0.04 0.14 0.07 MnO 0.05 0.03 0.07 0.16 0.16 0.21 0.18 0.17 0.16 0.19 0.19 0.15 0.18 0.19 0.13 0.17 0.13 烧失量 1.15 1.40 1.07 3.74 4.08 2.98 3.70 3.51 2.91 4.44 3.85 4.50 2.61 4.47 4.46 2.45 4.93 总计 99.82 99.79 99.84 99.56 99.72 99.74 99.88 99.50 99.67 99.68 99.77 99.73 99.72 99.75 99.75 99.41 99.47 K2O+Na2O 6.53 6.38 4.95 2.89 4.05 3.08 4.71 3.43 4.54 5.83 4.06 5.42 5.15 2.97 5.54 4.69 6.00 K2O/Na2O 0.01 0.01 0.01 0.26 0.11 0.24 0.03 0.17 0.11 0.04 0.64 0.24 0.22 0.87 0.11 0.19 0.54 Mg# 48 56 14 71 64 57 43 64 62 61 50 56 48 73 53 52 71 La 5.56 6.44 11.60 3.04 3.54 3.82 4.64 3.13 3.08 3.92 3.00 3.15 3.00 9.44 4.70 4.90 4.88 Ce 19.00 21.90 24.20 5.69 6.99 8.42 12.80 6.40 7.55 6.46 6.13 4.70 6.20 15.80 9.50 10.50 9.94 Pr 2.68 2.71 3.89 0.81 1.14 1.03 1.95 1.09 1.19 0.93 0.94 0.69 0.83 2.20 1.29 1.91 1.43 Nd 12.50 11.80 17.20 3.77 5.55 4.73 9.73 6.65 6.12 4.30 4.82 3.46 4.32 9.62 5.59 9.54 6.55 Sm 3.85 3.09 4.80 1.13 1.79 1.54 3.37 1.92 2.14 1.49 1.59 1.26 1.62 2.64 1.67 3.35 2.05 Eu 1.05 0.94 1.24 0.44 0.66 0.58 1.10 0.74 0.79 0.52 0.76 0.67 0.58 0.80 0.63 1.63 1.01 Gd 3.18 2.57 5.46 1.03 1.47 1.30 2.72 1.57 1.71 1.30 1.40 1.10 1.39 2.26 1.47 2.83 1.71 Tb 1.05 0.78 1.20 0.31 0.49 0.42 0.98 0.56 0.60 0.45 0.46 0.39 0.48 0.67 0.44 0.92 0.52 Dy 6.72 4.99 8.93 1.95 3.14 2.79 6.30 3.65 3.81 2.96 3.15 2.54 3.25 4.38 2.88 6.04 3.38 Ho 1.59 1.20 1.72 0.45 0.74 0.69 1.48 0.87 0.94 0.70 0.74 0.64 0.79 1.06 0.71 1.43 0.80 Er 4.45 3.49 4.58 1.24 2.11 1.94 4.15 2.50 2.62 1.96 2.09 1.85 2.26 2.89 2.06 3.97 2.24 Tm 0.76 0.63 0.78 0.20 0.35 0.32 0.69 0.42 0.45 0.33 0.35 0.32 0.41 0.48 0.34 0.65 0.38 Yb 4.66 4.13 4.80 1.28 2.23 2.12 4.37 2.73 2.85 2.15 2.31 2.22 2.67 2.98 2.38 4.38 2.58 Lu 0.71 0.73 0.75 0.21 0.36 0.36 0.67 0.45 0.46 0.37 0.40 0.38 0.46 0.45 0.41 0.65 0.44 Y 38.20 30.10 52.00 10.10 17.20 15.20 33.00 20.20 21.40 15.60 16.60 15.20 18.40 24.80 17.00 33.20 18.70 ∑REE 67.76 65.40 91.15 21.55 30.56 30.06 54.95 32.68 34.31 27.84 28.14 23.37 28.26 55.67 34.07 52.70 37.91 LREE 44.64 46.88 62.93 14.88 19.67 20.12 33.59 19.93 20.87 17.62 17.24 13.93 16.55 40.50 23.38 31.83 25.86 HREE 23.12 18.52 28.22 6.67 10.89 9.94 21.36 12.75 13.44 10.22 10.90 9.44 11.71 15.17 10.69 20.87 12.05 LREE/HREE 1.93 2.53 2.23 2.23 1.81 2.02 1.57 1.56 1.55 1.72 1.58 1.48 1.41 2.67 2.19 1.53 2.15 Cu 2.56 511.00 11.70 80.20 68.20 47.00 42.30 112.00 73.80 174.00 10.30 16.10 29.00 2.61 62.50 37.70 42.60 Cr 21.00 39.80 7.14 462.00 182.00 164.00 67.00 114.00 152.00 51.90 44.30 42.20 62.60 35.40 53.80 312.00 230.00 Ni 17.10 25.80 2.31 80.80 59.10 52.80 22.80 66.50 53.10 18.20 10.10 12.50 22.20 16.60 22.30 90.00 96.20 Co 13.90 19.80 2.30 30.90 34.20 38.70 41.50 41.00 35.20 33.40 29.20 30.20 35.50 19.20 23.00 50.10 30.80 Rb 3.24 2.58 2.51 10.00 4.33 12.80 4.32 4.49 6.37 9.35 45.00 24.60 21.20 20.90 4.91 18.40 34.60 W 0.63 1.05 0.31 0.57 0.52 0.74 0.54 0.53 0.54 0.71 0.55 1.44 0.64 0.66 0.65 0.63 0.55 Sr 120.00 48.60 112.00 336.00 103.00 200.00 98.30 936.00 85.60 194.00 293.00 272.00 172.00 234.00 114.00 768.00 384.00 Ba 32.00 25.10 12.20 99.60 73.60 110.00 38.60 226.00 112.00 172.00 420.00 296.00 134.00 107.00 96.60 476.00 1930.00 V 55.80 65.40 23.40 258.00 266.00 294.00 410.00 302.00 249.00 290.00 336.00 282.00 306.00 262.00 210.00 284.00 212.00 Sc 11.40 11.90 13.40 49.80 32.00 39.50 31.30 37.40 31.30 40.30 38.80 39.00 40.10 28.20 31.20 45.80 29.80 Nb 5.35 5.06 4.24 2.55 4.31 3.23 6.31 2.82 3.76 2.88 3.04 2.80 2.81 4.10 2.94 4.34 3.18 Ta 1.00 0.96 0.34 0.68 0.91 0.76 1.14 0.72 0.82 0.72 0.72 0.70 0.71 0.89 0.78 0.88 0.76 Zr 105.00 107.00 185.00 20.50 44.20 28.90 83.60 27.50 55.10 26.90 25.50 22.20 32.10 67.30 33.00 84.20 48.00 Hf 2.50 3.60 5.58 0.69 0.65 0.49 0.51 1.80 0.79 0.35 0.36 0.38 0.20 1.10 0.45 2.40 2.00 Sn 2.45 2.86 1.36 1.56 1.67 1.75 1.79 1.54 1.54 1.32 1.88 1.57 1.62 1.76 1.90 1.95 1.68 Ag 0.03 0.08 0.03 0.04 0.04 0.03 0.04 0.05 0.04 0.12 0.02 0.02 0.03 0.02 0.03 0.03 0.04 Au 0.52 0.61 0.59 0.88 0.50 1.43 0.52 0.52 0.37 0.53 0.47 0.55 0.70 0.46 0.31 0.41 0.96 U 0.68 1.18 0.47 0.66 0.66 0.74 1.12 0.34 1.12 0.38 0.97 0.72 0.94 1.07 0.51 0.78 0.42 Th 2.10 2.75 3.64 1.86 1.00 1.94 0.85 0.74 2.14 0.72 1.30 0.77 1.32 2.92 1.45 1.20 1.50 Eu* 0.92 1.02 0.74 1.25 1.24 1.25 1.11 1.30 1.26 1.14 1.56 1.74 1.18 1.00 1.23 1.62 1.65 (La/Yb)N 0.80 1.05 1.63 1.60 1.07 1.21 0.72 0.77 0.73 1.23 0.88 0.96 0.76 2.14 1.33 0.75 1.28 (La/Sm)N 0.91 1.31 1.52 1.69 1.24 1.56 0.87 1.03 0.91 1.65 1.19 1.57 1.16 2.25 1.77 0.92 1.50 (Gd/Yb)N 0.55 0.50 0.92 0.65 0.53 0.49 0.50 0.46 0.48 0.49 0.49 0.40 0.42 0.61 0.50 0.52 0.53 (Sm/Nd)N 0.95 0.81 0.86 0.92 0.99 1.00 1.07 0.89 1.08 1.07 1.02 1.12 1.15 0.84 0.92 1.08 0.96 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 2 斜长花岗岩(2145TW)LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 2. LA-ICP-MS zircon U-Th-Pb data for plagiogranite(2145TW)
样品编号 含量/10-6 Th/U 同位素比值(±1σ) 年龄/Ma(±1σ) Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 2145TW-01 132 159 0.83 0.0544 0.0045 0.1952 0.0153 0.0261 0.0006 387 189 181 13 166 4 2145TW-02 223 201 1.11 0.0610 0.0056 0.2119 0.0170 0.0261 0.0006 639 200 195 14 166 4 2145TW-03 155 143 1.08 0.0567 0.0058 0.2095 0.0207 0.0266 0.0008 480 234 193 17 169 5 2145TW-04 607 399 1.52 0.0416 0.0031 0.1566 0.0113 0.0266 0.0005 148 10 169 3 2145TW-05 442 311 1.42 0.0397 0.0031 0.1483 0.0110 0.0260 0.0006 140 10 166 3 2145TW-06 127 126 1.00 0.0726 0.0066 0.2778 0.0245 0.0260 0.0008 1003 192 249 19 166 5 2145TW-07 136 153 0.89 0.0618 0.0056 0.2267 0.0175 0.0265 0.0008 733 194 207 15 169 5 2145TW-08 133 129 1.03 0.0704 0.0075 0.2522 0.0230 0.0270 0.0008 939 219 228 19 172 5 2145TW-09 114 128 0.89 0.0540 0.0048 0.1978 0.0155 0.0266 0.0008 372 197 183 13 169 5 2145TW-10 98.0 120 0.82 0.0514 0.0044 0.1854 0.0147 0.0263 0.0007 261 194 173 13 167 5 2145TW-11 320 251 1.28 0.0424 0.0037 0.1520 0.0119 0.0258 0.0007 144 10 164 4 2145TW-12 60.6 97.4 0.62 0.0771 0.0093 0.2667 0.0253 0.0263 0.0009 1124 241 240 20 167 6 2145TW-13 460 311 1.48 0.0387 0.0028 0.1436 0.0102 0.0261 0.0006 136 9 166 3 2145TW-14 127 139 0.91 0.0577 0.0054 0.2124 0.0188 0.0269 0.0007 517 206 196 16 171 5 2145TW-15 475 317 1.50 0.0433 0.0033 0.1624 0.0120 0.0265 0.0006 153 10 169 4 2145TW-16 121 136 0.89 0.0706 0.0053 0.2594 0.0175 0.0267 0.0007 946 158 234 14 170 4 2145TW-17 295 232 1.27 0.0514 0.0040 0.1786 0.0116 0.0268 0.0007 261 178 167 10 170 4 2145TW-18 153 153 1.00 0.0664 0.0056 0.2392 0.0190 0.0266 0.0007 820 176 218 16 169 5 2145TW-19 94.1 120 0.78 0.0765 0.0078 0.2634 0.0251 0.0264 0.0008 1109 201 237 20 168 5 2145TW-20 92.2 118 0.78 0.0856 0.0077 0.2944 0.0265 0.0262 0.0007 1329 174 262 21 167 4 2145TW-21 121 131 0.92 0.0805 0.0063 0.2966 0.0248 0.0265 0.0007 1209 156 264 19 169 4 2145TW-22 140 158 0.89 0.0669 0.0059 0.2432 0.0198 0.0266 0.0007 835 183 221 16 169 4 2145TW-23 119 146 0.82 0.0596 0.0062 0.2071 0.0173 0.0267 0.0008 591 429 191 15 170 5 2145TW-24 206 190 1.09 0.0533 0.0041 0.1867 0.0144 0.0259 0.0006 343 169 174 12 165 4 -
[1] Dewey J F, Bird J M.Origin and Emplacement of the Ophiolite Suite:Appalachian Ophiolites in Newfoundland[J].Journal of Geophysical Research, 1971, 76:3179-3206. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-JB076i014p03179/
[2] Nicolas A.Structures of Ophiolites and Dynamics of Oceanic Lithosphere[M].Kluwer Academic Publishers, 1989.
[3] Dilek Y, Flower M F J.Arc-trench rollback and forearc accretion:2.A model template for ophiolites in Albania, Cyprus, and Oman[J].Geological Society London Special Publications, 2003, 218:43-68. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-GSL.SP.2003.218.01.04/
[4] Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].Geological Society of America Bulletin, 2011, 123:387-411. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-B30446.1/
[5] Lister G, Forster M.Tectonic mode switches and the nature of orogenesis[J].Lithos, 2009, 113:274-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ea28191422540e15264e5e76285344d
[6] Xu M, Li C, Zhang X, et al.Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology[J].International Geology Review, 2014, 56(9):1072-1096. http://www.researchgate.net/publication/271665766_Nature_and_evolution_of_the_Neo-Tethys_in_central_Tibet_synthesis_of_ophiolitic_petrology_geochemistry_and_geochronology
[7] Zhu D C, Zhao Z D, Niu Y, et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research, 2013, 23:1429-1454. http://www.sciencedirect.com/science/article/pii/S1342937X1200041X
[8] 西藏自治区地质调查院.1/25万改则县幅区域地质调查报告[M].北京:地质出版社, 2012.
[9] 张玉修, 张开均, 黎兵, 等.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J].科学通报, 2007, 52(1):100-106. http://d.old.wanfangdata.com.cn/Periodical/kxtb200701017
[10] 樊帅权, 史仁灯, 丁林, 等.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义[J].岩石矿物学杂志, 2010, 29(5):467-478. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201005002
[11] 西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社, 1993.
[12] 王保弟, 许继峰, 曾庆高, 等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报, 2007, 23(6):1521-1530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706026
[13] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c
[14] Winchester J A, Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0009-2541(77)90057-2/
[15] Miyashiro A.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science, 1974, 274(4):321-355. http://dx.doi.org/10.2475/ajs.274.4.321
[16] Boynton W V.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P.Rare Earth Elements Geochemistry, Elsevier, Amsterdam, 1984: 63-114.
[17] Sun W D, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-GSL.SP.1989.042.01.19/
[18] Yuan Y J, Yin Z X, Liu W L, et al.Tectonic Evolution of the Meso·Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J].Acta Geologica Sinica(English Edition), 2015, 89(2):369-388. http://d.old.wanfangdata.com.cn/Periodical_dzxb-e201502006.aspx
[19] Pearce J A, Stern R J.Origin of back-arc basin magmas:Trace element and isotope perspectives, Back-arc spreading systems:Geological, Biological, Chemical, and Physical Interactions[M].Washington, DC, AGU, 2006:63-86.
[20] Fretzdorff S, Livermore R A, Devey C W, et al.Petrogenesis of the Back-arc East Scotia Ridge, South Atlantic Ocean[J].Journal of Petrology, 2002, 43:1435-1467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48edcd46fea9cc5fecf67d73a05492fb
[21] Hawkins J W.Geology of supra-subduction zones: Implications for the origin of ophiolites[C]//Dilek Y, Newcomb S.Ophiolite concept and the evolution of geological thought, 2003.
[22] Sinton J M, Ford L L, Chappell B, et al.Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea[J].Journal of Petrology, 2003, 44:159-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c17c5fefa4b1e9747ba85529f09d0078
[23] Pearce J A, Cann J R.Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyse[J].Earth & Planetary Science Letters, 1973, 19(2):290-300. http://www.sciencedirect.com/science/article/pii/0012821X73901295
[24] Stolper E, Newman S.The role of water in the petrogenesis of Mariana trough magmas[J].Earth & Planetary Science Letters, 1994, 121:293-325. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(94)90074-4/
[25] Pearce J A, Peate D W.Tectonic Implications of the Composition of Volcanic ARC Magmas[J].Annual Review of Earth & Planetary Sciences, 1995, 23:251-285. http://www.researchgate.net/publication/234148960_Tectonic_Implications_of_the_Composition_of_Volcanic_ARC_Magmas
[26] Geng H, Sun M, Yuan C, et al.Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences, 2011, 42:854-866. http://www.sciencedirect.com/science/article/pii/S1367912011000356
[27] Jung C, Jung S, Hoffer E, et al.Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany[J].Journal of Petrology, 2006, 47:1637-1671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3c2e6d948819a20f8f3dd0dcb0ad766
[28] Zhao J H, Zhou M F.Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J].Precambrian Research, 2007, 152:27-47. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.precamres.2006.09.002/
[29] Aldanmaz E, Pearce J A, Thirlwall M F, et al.Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J].Journal of Volcanology & Geothermal Research, 2000, 102:67-95. http://www.sciencedirect.com/science/article/pii/S0377027300001827
[30] Brophy J G.La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:implications for the origin of oceanic plagiogranite[J].Contrib. Mineral. Petrol., 2009, 158:99-111. http://link.springer.com/article/10.1007/s00410-008-0372-3
[31] Frey F A, Green D H, Roy S D.Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J].Journal of Petrology, 1978, 19:463-513. http://www.researchgate.net/publication/279240326_Integrated_Models_of_Basalt_Petrogenesis_A_Study_of_Quartz_Tholeiites_to_Olivine_Melilitites_from_South_Eastern_Australia_Utilizing_Geochemical_and_Experimental_Petrological_Data
[32] Hess P C.Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M.Mantle Flow and Melt Generation at Mid-Ocean Ridges.Geophysical Monograph 71, American Geophysical Union.1992: 67-102.
[33] Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-466.
[34] Jung S, Mesberg P.Major and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg(central Germany)Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J].Journal of Volcanology and Geothermal Research, 1998, 86:151-177.
[35] 徐建鑫.西藏改则县拉果错蛇绿岩的构造属性[D].吉林大学博士学位论文, 2015.
[36] Cabanis B, Lecolle M.Le diagramme La/10-Y/15-Nb/8:Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale[J].Comptes Rendus de l'Academie des Sciences Series Ⅱ, 1989, 309:2023-2029.
[37] Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth & Planetary Science Letters, 1982, 59(1)101-118. http://www.sciencedirect.com/science/article/pii/0012821X82901200
[38] Metzger E P, Miller R B, Harper G D.Geochemistry and Tectonic Setting of the Ophiolitic Ingalls Complex, North Cascades, Washington:Implications for Correlations of Jurassic Cordilleran Ophiolites[J].The Journal of Geology, 2002, 110(5):543-560. http://www.researchgate.net/publication/241401173_Geochemistry_and_Tectonic_Setting_of_the_Ophiolitic_Ingalls_Complex_North_Cascades_Washington_Implications_for_Correlations_of_Jurassic_Cordilleran_Ophiolites
[39] Gribble R F, Stern R J, Bloomer S H, et al.MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J].Geochimica Et Cosmochimica Acta, 1996, 60(12):2153-2166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a575d4eee53915fdba788b686694fefa
[40] Shinjo R, Chung S L, Kato Y, et al.Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc:Implications for the evolution of a young, intracontinental back arc basin[J].Journal of Geophysical Research Solid Earth, 1999, 104(B5):10591-10608. http://www.researchgate.net/publication/248799449_Geochemical_and_Sr-Nd_isotopic_characteristics_of_volcanic_rocks_from_the_Okinawa_Trough_and_Ryukyu_Arc_Implications_for_the_evolution_of_a_young_intracontinental_back_arc_basin?ev=auth_pub
[41] Xu J F, Castillo P R, Chen F R, et al.Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China:implications for backarc mantle evolution[J].Chemical Geology, 2003, 193:137-154. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0009-2541(02)00265-6/
[42] Ghazi J M, Moazzen M, Rahgoshay M, et al.Geochemical characteristics of basaltic rocks from the Nain ophiolite(Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model[J].Tectonophysics, 2012, 574/575:92-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5becdc05dcddc403fcd6b5fd1b2299a8
-