西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征

刘海永, 曾庆高, 王雨, 毛国正. 西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2-3): 164-176.
引用本文: 刘海永, 曾庆高, 王雨, 毛国正. 西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2-3): 164-176.
LIU Haiyong, ZENG Qinggao, WANG Yu, MAO Guozheng. Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet[J]. Geological Bulletin of China, 2020, 39(2-3): 164-176.
Citation: LIU Haiyong, ZENG Qinggao, WANG Yu, MAO Guozheng. Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet[J]. Geological Bulletin of China, 2020, 39(2-3): 164-176.

西藏拉果错蛇绿混杂岩岩石学、锆石U-Pb年龄及地球化学特征

  • 基金项目:
    中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》(编号:DD20160026)和《西藏区域地质调查片区总结与服务产品开发》(编号:DD20160345)
详细信息
    作者简介: 刘海永(1987-), 男, 硕士, 工程师, 地质工程专业。E-mail:Liuhy_vip@126.com
    通讯作者: 毛国正(1971-), 男, 高级工程师, 从事青藏高原区域地质调查研究工作。E-mail:372806851@qq.com
  • 中图分类号: P597+.3;P595

Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet

More Information
  • 拉果错蛇绿岩是青藏高原中部狮泉河-纳木错-嘉黎缝合带中出露最完整的蛇绿岩组合之一,对恢复和反演该缝合带代表的洋盆演化及洋盆性质具有重要的约束意义。以拉果错蛇绿岩中的辉长岩、辉绿岩、辉绿玢岩和斜长花岗岩为研究对象,在岩石学、锆石U-Pb年代学和全岩地球化学研究的基础上,探讨了拉果错蛇绿岩的成因和构造背景,以此约束狮泉河-纳木错-嘉黎缝合带的性质。结果显示,斜长花岗岩锆石U-Pb年龄为167.8±1.7 Ma(n=24,MSWD=0.22),表明拉果错蛇绿岩形成于晚侏罗世。地球化学特征显示,拉果错蛇绿岩中辉长岩与辉绿岩端元均兼具岛弧与富集洋中脊玄武岩的地球化学性质,指示其形成于大陆弧后盆地环境。

  • 加载中
  • 图 1  西藏中部拉果错地区地质简图

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  Nb/Y-Zr/TiO2*0.0001岩石分类图解[14](a)和(b)SiO2-TFeO/MgO图解[15]

    Figure 2. 

    图 3  稀土元素配分模式(a、c)[16]和微量元素蛛网图(b、d)[17]

    Figure 3. 

    图 4  Or-Ab-An图解(a)和SiO2-K2O图解(b)

    Figure 4. 

    图 5  锆石阴极发光(CL)图像、锆石U-Pb谐和图(a)和年龄分布图(b)

    Figure 5. 

    图 6  Zr-Nb[26]图解(a)和Dy/Yb-La/Yb[27]图解(b)

    Figure 6. 

    图 7  Cr-Ni图解[35]

    Figure 7. 

    图 8  Ti/1000-V图解(a)和Y/15-La/10-Nb/8三角图解(b)[36]

    Figure 8. 

    表 1  拉果错蛇绿岩的全岩主量、微量和稀土元素分析结果

    Table 1.  Major, trace and rare earth elements data for the Lhaguo Tso ophiolite

    岩性
    样号
    斜长花岗岩辉长岩辉绿岩辉绿(玢)岩
    PD003Gs14PD003Gs182145Gs1447Gs1754Gs11758Gs11777GsPM003Gs36PM003Gs381195Gs11908Gs41910Gs1194Gs1908Gs11910Gs51438Gs51442Gs3
    SiO271.9072.6573.1847.8949.6149.7953.1948.0052.3453.1752.0749.6452.6247.0450.8049.5650.59
    Al2O313.9113.2513.0116.9214.7417.3813.2315.7014.0216.0816.9316.9016.0816.5919.5015.3516.60
    Fe2O31.030.912.892.252.032.143.102.312.271.252.921.660.970.981.543.202.28
    FeO1.651.090.535.037.928.1110.087.156.608.167.087.949.306.785.667.185.02
    TFe2O32.862.123.477.8410.8311.1514.3010.259.6010.3210.7910.4811.308.517.8311.187.86
    CaO2.012.473.6811.897.679.095.3010.669.193.037.157.287.6410.197.759.984.95
    MgO1.131.150.258.218.426.304.727.746.706.814.655.614.469.723.845.308.18
    K2O0.090.040.060.600.390.600.120.500.470.221.581.050.921.380.550.752.10
    Na2O6.446.344.892.293.662.484.592.934.075.612.484.374.231.594.993.943.90
    TiO20.400.400.180.540.970.631.550.790.890.690.810.600.690.730.491.390.72
    P2O50.060.060.040.040.060.030.130.050.060.030.060.030.030.100.040.140.07
    MnO0.050.030.070.160.160.210.180.170.160.190.190.150.180.190.130.170.13
    烧失量1.151.401.073.744.082.983.703.512.914.443.854.502.614.474.462.454.93
    总计99.8299.7999.8499.5699.7299.7499.8899.5099.6799.6899.7799.7399.7299.7599.7599.4199.47
    K2O+Na2O6.536.384.952.894.053.084.713.434.545.834.065.425.152.975.544.696.00
    K2O/Na2O0.010.010.010.260.110.240.030.170.110.040.640.240.220.870.110.190.54
    Mg#4856147164574364626150564873535271
    La5.566.4411.603.043.543.824.643.133.083.923.003.153.009.444.704.904.88
    Ce19.0021.9024.205.696.998.4212.806.407.556.466.134.706.2015.809.5010.509.94
    Pr2.682.713.890.811.141.031.951.091.190.930.940.690.832.201.291.911.43
    Nd12.5011.8017.203.775.554.739.736.656.124.304.823.464.329.625.599.546.55
    Sm3.853.094.801.131.791.543.371.922.141.491.591.261.622.641.673.352.05
    Eu1.050.941.240.440.660.581.100.740.790.520.760.670.580.800.631.631.01
    Gd3.182.575.461.031.471.302.721.571.711.301.401.101.392.261.472.831.71
    Tb1.050.781.200.310.490.420.980.560.600.450.460.390.480.670.440.920.52
    Dy6.724.998.931.953.142.796.303.653.812.963.152.543.254.382.886.043.38
    Ho1.591.201.720.450.740.691.480.870.940.700.740.640.791.060.711.430.80
    Er4.453.494.581.242.111.944.152.502.621.962.091.852.262.892.063.972.24
    Tm0.760.630.780.200.350.320.690.420.450.330.350.320.410.480.340.650.38
    Yb4.664.134.801.282.232.124.372.732.852.152.312.222.672.982.384.382.58
    Lu0.710.730.750.210.360.360.670.450.460.370.400.380.460.450.410.650.44
    Y38.2030.1052.0010.1017.2015.2033.0020.2021.4015.6016.6015.2018.4024.8017.0033.2018.70
    ∑REE67.7665.4091.1521.5530.5630.0654.9532.6834.3127.8428.1423.3728.2655.6734.0752.7037.91
    LREE44.6446.8862.9314.8819.6720.1233.5919.9320.8717.6217.2413.9316.5540.5023.3831.8325.86
    HREE23.1218.5228.226.6710.899.9421.3612.7513.4410.2210.909.4411.7115.1710.6920.8712.05
    LREE/HREE1.932.532.232.231.812.021.571.561.551.721.581.481.412.672.191.532.15
    Cu2.56511.0011.7080.2068.2047.0042.30112.0073.80174.0010.3016.1029.002.6162.5037.7042.60
    Cr21.0039.807.14462.00182.00164.0067.00114.00152.0051.9044.3042.2062.6035.4053.80312.00230.00
    Ni17.1025.802.3180.8059.1052.8022.8066.5053.1018.2010.1012.5022.2016.6022.3090.0096.20
    Co13.9019.802.3030.9034.2038.7041.5041.0035.2033.4029.2030.2035.5019.2023.0050.1030.80
    Rb3.242.582.5110.004.3312.804.324.496.379.3545.0024.6021.2020.904.9118.4034.60
    W0.631.050.310.570.520.740.540.530.540.710.551.440.640.660.650.630.55
    Sr120.0048.60112.00336.00103.00200.0098.30936.0085.60194.00293.00272.00172.00234.00114.00768.00384.00
    Ba32.0025.1012.2099.6073.60110.0038.60226.00112.00172.00420.00296.00134.00107.0096.60476.001930.00
    V55.8065.4023.40258.00266.00294.00410.00302.00249.00290.00336.00282.00306.00262.00210.00284.00212.00
    Sc11.4011.9013.4049.8032.0039.5031.3037.4031.3040.3038.8039.0040.1028.2031.2045.8029.80
    Nb5.355.064.242.554.313.236.312.823.762.883.042.802.814.102.944.343.18
    Ta1.000.960.340.680.910.761.140.720.820.720.720.700.710.890.780.880.76
    Zr105.00107.00185.0020.5044.2028.9083.6027.5055.1026.9025.5022.2032.1067.3033.0084.2048.00
    Hf2.503.605.580.690.650.490.511.800.790.350.360.380.201.100.452.402.00
    Sn2.452.861.361.561.671.751.791.541.541.321.881.571.621.761.901.951.68
    Ag0.030.080.030.040.040.030.040.050.040.120.020.020.030.020.030.030.04
    Au0.520.610.590.880.501.430.520.520.370.530.470.550.700.460.310.410.96
    U0.681.180.470.660.660.741.120.341.120.380.970.720.941.070.510.780.42
    Th2.102.753.641.861.001.940.850.742.140.721.300.771.322.921.451.201.50
    Eu*0.921.020.741.251.241.251.111.301.261.141.561.741.181.001.231.621.65
    (La/Yb)N0.801.051.631.601.071.210.720.770.731.230.880.960.762.141.330.751.28
    (La/Sm)N0.911.311.521.691.241.560.871.030.911.651.191.571.162.251.770.921.50
    (Gd/Yb)N0.550.500.920.650.530.490.500.460.480.490.490.400.420.610.500.520.53
    (Sm/Nd)N0.950.810.860.920.991.001.070.891.081.071.021.121.150.840.921.080.96
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 2  斜长花岗岩(2145TW)LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 2.  LA-ICP-MS zircon U-Th-Pb data for plagiogranite(2145TW)

    样品编号含量/10-6Th/U同位素比值(±1σ)年龄/Ma(±1σ)
    ThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    2145TW-011321590.830.05440.00450.19520.01530.02610.0006387189181131664
    2145TW-022232011.110.06100.00560.21190.01700.02610.0006639200195141664
    2145TW-031551431.080.05670.00580.20950.02070.02660.0008480234193171695
    2145TW-046073991.520.04160.00310.15660.01130.02660.0005148101693
    2145TW-054423111.420.03970.00310.14830.01100.02600.0006140101663
    2145TW-061271261.000.07260.00660.27780.02450.02600.00081003192249191665
    2145TW-071361530.890.06180.00560.22670.01750.02650.0008733194207151695
    2145TW-081331291.030.07040.00750.25220.02300.02700.0008939219228191725
    2145TW-091141280.890.05400.00480.19780.01550.02660.0008372197183131695
    2145TW-1098.01200.820.05140.00440.18540.01470.02630.0007261194173131675
    2145TW-113202511.280.04240.00370.15200.01190.02580.0007144101644
    2145TW-1260.697.40.620.07710.00930.26670.02530.02630.00091124241240201676
    2145TW-134603111.480.03870.00280.14360.01020.02610.000613691663
    2145TW-141271390.910.05770.00540.21240.01880.02690.0007517206196161715
    2145TW-154753171.500.04330.00330.16240.01200.02650.0006153101694
    2145TW-161211360.890.07060.00530.25940.01750.02670.0007946158234141704
    2145TW-172952321.270.05140.00400.17860.01160.02680.0007261178167101704
    2145TW-181531531.000.06640.00560.23920.01900.02660.0007820176218161695
    2145TW-1994.11200.780.07650.00780.26340.02510.02640.00081109201237201685
    2145TW-2092.21180.780.08560.00770.29440.02650.02620.00071329174262211674
    2145TW-211211310.920.08050.00630.29660.02480.02650.00071209156264191694
    2145TW-221401580.890.06690.00590.24320.01980.02660.0007835183221161694
    2145TW-231191460.820.05960.00620.20710.01730.02670.0008591429191151705
    2145TW-242061901.090.05330.00410.18670.01440.02590.0006343169174121654
    下载: 导出CSV
  • [1]

    Dewey J F, Bird J M.Origin and Emplacement of the Ophiolite Suite:Appalachian Ophiolites in Newfoundland[J].Journal of Geophysical Research, 1971, 76:3179-3206. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-JB076i014p03179/

    [2]

    Nicolas A.Structures of Ophiolites and Dynamics of Oceanic Lithosphere[M].Kluwer Academic Publishers, 1989.

    [3]

    Dilek Y, Flower M F J.Arc-trench rollback and forearc accretion:2.A model template for ophiolites in Albania, Cyprus, and Oman[J].Geological Society London Special Publications, 2003, 218:43-68. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-GSL.SP.2003.218.01.04/

    [4]

    Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].Geological Society of America Bulletin, 2011, 123:387-411. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-B30446.1/

    [5]

    Lister G, Forster M.Tectonic mode switches and the nature of orogenesis[J].Lithos, 2009, 113:274-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ea28191422540e15264e5e76285344d

    [6]

    Xu M, Li C, Zhang X, et al.Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology[J].International Geology Review, 2014, 56(9):1072-1096. http://www.researchgate.net/publication/271665766_Nature_and_evolution_of_the_Neo-Tethys_in_central_Tibet_synthesis_of_ophiolitic_petrology_geochemistry_and_geochronology

    [7]

    Zhu D C, Zhao Z D, Niu Y, et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research, 2013, 23:1429-1454. http://www.sciencedirect.com/science/article/pii/S1342937X1200041X

    [8]

    西藏自治区地质调查院.1/25万改则县幅区域地质调查报告[M].北京:地质出版社, 2012.

    [9]

    张玉修, 张开均, 黎兵, 等.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J].科学通报, 2007, 52(1):100-106. http://d.old.wanfangdata.com.cn/Periodical/kxtb200701017

    [10]

    樊帅权, 史仁灯, 丁林, 等.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义[J].岩石矿物学杂志, 2010, 29(5):467-478. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201005002

    [11]

    西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社, 1993.

    [12]

    王保弟, 许继峰, 曾庆高, 等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报, 2007, 23(6):1521-1530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706026

    [13]

    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    [14]

    Winchester J A, Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0009-2541(77)90057-2/

    [15]

    Miyashiro A.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science, 1974, 274(4):321-355. http://dx.doi.org/10.2475/ajs.274.4.321

    [16]

    Boynton W V.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P.Rare Earth Elements Geochemistry, Elsevier, Amsterdam, 1984: 63-114.

    [17]

    Sun W D, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-GSL.SP.1989.042.01.19/

    [18]

    Yuan Y J, Yin Z X, Liu W L, et al.Tectonic Evolution of the Meso·Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J].Acta Geologica Sinica(English Edition), 2015, 89(2):369-388. http://d.old.wanfangdata.com.cn/Periodical_dzxb-e201502006.aspx

    [19]

    Pearce J A, Stern R J.Origin of back-arc basin magmas:Trace element and isotope perspectives, Back-arc spreading systems:Geological, Biological, Chemical, and Physical Interactions[M].Washington, DC, AGU, 2006:63-86.

    [20]

    Fretzdorff S, Livermore R A, Devey C W, et al.Petrogenesis of the Back-arc East Scotia Ridge, South Atlantic Ocean[J].Journal of Petrology, 2002, 43:1435-1467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48edcd46fea9cc5fecf67d73a05492fb

    [21]

    Hawkins J W.Geology of supra-subduction zones: Implications for the origin of ophiolites[C]//Dilek Y, Newcomb S.Ophiolite concept and the evolution of geological thought, 2003.

    [22]

    Sinton J M, Ford L L, Chappell B, et al.Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea[J].Journal of Petrology, 2003, 44:159-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c17c5fefa4b1e9747ba85529f09d0078

    [23]

    Pearce J A, Cann J R.Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyse[J].Earth & Planetary Science Letters, 1973, 19(2):290-300. http://www.sciencedirect.com/science/article/pii/0012821X73901295

    [24]

    Stolper E, Newman S.The role of water in the petrogenesis of Mariana trough magmas[J].Earth & Planetary Science Letters, 1994, 121:293-325. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(94)90074-4/

    [25]

    Pearce J A, Peate D W.Tectonic Implications of the Composition of Volcanic ARC Magmas[J].Annual Review of Earth & Planetary Sciences, 1995, 23:251-285. http://www.researchgate.net/publication/234148960_Tectonic_Implications_of_the_Composition_of_Volcanic_ARC_Magmas

    [26]

    Geng H, Sun M, Yuan C, et al.Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences, 2011, 42:854-866. http://www.sciencedirect.com/science/article/pii/S1367912011000356

    [27]

    Jung C, Jung S, Hoffer E, et al.Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany[J].Journal of Petrology, 2006, 47:1637-1671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3c2e6d948819a20f8f3dd0dcb0ad766

    [28]

    Zhao J H, Zhou M F.Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J].Precambrian Research, 2007, 152:27-47. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.precamres.2006.09.002/

    [29]

    Aldanmaz E, Pearce J A, Thirlwall M F, et al.Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J].Journal of Volcanology & Geothermal Research, 2000, 102:67-95. http://www.sciencedirect.com/science/article/pii/S0377027300001827

    [30]

    Brophy J G.La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:implications for the origin of oceanic plagiogranite[J].Contrib. Mineral. Petrol., 2009, 158:99-111. http://link.springer.com/article/10.1007/s00410-008-0372-3

    [31]

    Frey F A, Green D H, Roy S D.Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J].Journal of Petrology, 1978, 19:463-513. http://www.researchgate.net/publication/279240326_Integrated_Models_of_Basalt_Petrogenesis_A_Study_of_Quartz_Tholeiites_to_Olivine_Melilitites_from_South_Eastern_Australia_Utilizing_Geochemical_and_Experimental_Petrological_Data

    [32]

    Hess P C.Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M.Mantle Flow and Melt Generation at Mid-Ocean Ridges.Geophysical Monograph 71, American Geophysical Union.1992: 67-102.

    [33]

    Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-466.

    [34]

    Jung S, Mesberg P.Major and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg(central Germany)Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J].Journal of Volcanology and Geothermal Research, 1998, 86:151-177.

    [35]

    徐建鑫.西藏改则县拉果错蛇绿岩的构造属性[D].吉林大学博士学位论文, 2015.

    [36]

    Cabanis B, Lecolle M.Le diagramme La/10-Y/15-Nb/8:Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale[J].Comptes Rendus de l'Academie des Sciences Series Ⅱ, 1989, 309:2023-2029.

    [37]

    Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth & Planetary Science Letters, 1982, 59(1)101-118. http://www.sciencedirect.com/science/article/pii/0012821X82901200

    [38]

    Metzger E P, Miller R B, Harper G D.Geochemistry and Tectonic Setting of the Ophiolitic Ingalls Complex, North Cascades, Washington:Implications for Correlations of Jurassic Cordilleran Ophiolites[J].The Journal of Geology, 2002, 110(5):543-560. http://www.researchgate.net/publication/241401173_Geochemistry_and_Tectonic_Setting_of_the_Ophiolitic_Ingalls_Complex_North_Cascades_Washington_Implications_for_Correlations_of_Jurassic_Cordilleran_Ophiolites

    [39]

    Gribble R F, Stern R J, Bloomer S H, et al.MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J].Geochimica Et Cosmochimica Acta, 1996, 60(12):2153-2166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a575d4eee53915fdba788b686694fefa

    [40]

    Shinjo R, Chung S L, Kato Y, et al.Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc:Implications for the evolution of a young, intracontinental back arc basin[J].Journal of Geophysical Research Solid Earth, 1999, 104(B5):10591-10608. http://www.researchgate.net/publication/248799449_Geochemical_and_Sr-Nd_isotopic_characteristics_of_volcanic_rocks_from_the_Okinawa_Trough_and_Ryukyu_Arc_Implications_for_the_evolution_of_a_young_intracontinental_back_arc_basin?ev=auth_pub

    [41]

    Xu J F, Castillo P R, Chen F R, et al.Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China:implications for backarc mantle evolution[J].Chemical Geology, 2003, 193:137-154. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0009-2541(02)00265-6/

    [42]

    Ghazi J M, Moazzen M, Rahgoshay M, et al.Geochemical characteristics of basaltic rocks from the Nain ophiolite(Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model[J].Tectonophysics, 2012, 574/575:92-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5becdc05dcddc403fcd6b5fd1b2299a8

  • 加载中

(9)

(2)

计量
  • 文章访问数:  586
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-11-03
修回日期:  2019-05-28
刊出日期:  2020-03-15

目录