Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault
-
摘要:
长序列古地震记录是理解断裂地震复发行为的关键,亦是区域地震危险性评价的重要基础。阿尔金断裂作为世界上最长的走滑断裂之一,其大地震复发行为一直是地震地质学家关注的重点。在该断裂中段索尔库里段开挖的探槽记录了8~9次古地震事件,发生时间分别为AD1598(1491~1740)、AD796(676~926)、668(732~590)BC、956(1206~716)BC、1301(1369~1235)BC、2105(2232~1987)BC、2664(2731~2601)BC、2818(2878~2742)BC和3411(3521~3205)BC。平均复发周期为620±410 a,变异系数为0.67,显示了弱准周期性。通过与其他研究点位的古地震数据对比,发现只有部分强震扩展至阿克塞弯曲内部。根据古地震复发周期和最新一次古地震的离逝时间,计算结果表明索尔库里段已经累积了3.3~4.6m的位移量,相当于Mw7.4~7.7地震,且未来30年发生强震的概率为0.07。
Abstract:Long records of paleoearthquakes are essential for understanding earthquake recurrence behavior of active faults and evaluating regional seismic hazard.The Altyn Tagh fault, one of the longest strike-slip faults in the world, is a research focus among seismic geologists.The authors documented a long paleoseismic record along the Xorkoli section of central Altyn Tagh fault.Eight or probably nine earthquakes were identified based on event evidence in the forms of open fissures, folds, unconformities, and upward fault terminations, with ages of AD1598 (1491~1740), AD796 (676~926), 668 (732~590) BC, 956 (1206~716) BC, 1301 (1369~1235) BC, 2105 (2232~1987) BC, 2664 (2731~2601) BC, 2818 (2878~2742) BC and 3411 (3521~3205) BC respectively.The mean recurrence interval is 620±410 a with a coefficient of variation of 0.67, indicating that earthquake recurrence is weakly periodic.Synthesis of paleoseismic sites from the central Altyn Tagh fault indicates that not all earthquakes ruptured to the eastern end of the Xorkoli section, within the Aksay restraining bend.Given the 420 a elapsed time since the most recent event, a large surface-rupturing earthquake could occur at any time along the central section.
-
Key words:
- Tibet /
- Altyn Tagh fault /
- active tectionics /
- strike-slip fault /
- paleoseismology
-
-
表 1 铜矿探槽地层单元划分及其特征
Table 1. Summary of stratigraphy exposed in the Copper Mine trenches
地层
编号描述 50 由两套地层组成,下部为浅蓝灰色极细砂-细砂,只发育在断层带形成的断陷塘里;上部为浅蓝灰色极细砂至粉砂,在所有部位均可见 100-1 浅红色极细砂-粉砂 100-2 浅红灰色中砂 100-3 浅红色粉砂 100-4 正粒序韵律,从灰色粗砂至浅红色极细砂 110-1a 浅粉色极细砂和浅灰色极细砂-粉砂 110-1b 与地层110-1a相似,底界为一层浅灰色粉砂薄层 110-2 下部为浅红色极细砂;上部为浅灰色极细砂-粉砂 110-3 浅红色粉砂和浅棕色极细砂,特征明显,在所有部位均可见 120 浅蓝灰色极细砂-粉砂,厚度变化较大;该层在断层带断陷位置明显增厚,偶还夹有若干层浅红色粉砂 130 粉色极细砂-细砂,地层厚度略有变化 140 蓝灰色细砂,厚度有变化 150 浅蓝灰色极细砂,厚度有变化,但在所有部位均可见 161a 浅红色-粉色极细砂-粉砂,厚度有变化,局部地层 161b 蓝灰色细砂,厚度有变化,局部地层 162a 浅蓝灰色极细砂,局部地层 162b 浅红棕色细砂-极细砂,局部地层 163 浅红棕色极细砂-粉砂,局部地层 164 浅红棕色极细砂-粉砂,局部地层 165 浅粉色极细砂,局部地层 170 粉色极细砂-粉砂,厚度轻微变化 180 蓝灰色细砂,薄层 190 浅蓝灰色细砂,顶界为粉色极细砂薄层 200 粉色极细砂-粉砂,中厚层 205 浅棕色极细砂,只分布在主断层带北侧 210 浅灰色极细砂,中厚层 220 浅灰色-浅红棕色细砂、中砂,粒度向上变粗,薄层 230 浅红色-粉色极细砂-粉砂,中厚层 240 浅灰色-浅蓝灰色中砂-极细砂、粉砂,粒度向上变细,颜色向下变深,薄层 250 浅红色-粉色极细砂-粉砂,夹几层浅蓝灰色极细砂条带,中厚-厚层 260 浅绿灰色细砂,厚度向南变薄直至消失,薄层 270 整体上呈粉色-浅红色极细砂-粉砂,夹不连续展布的浅灰绿色极细砂条带,中-厚层 280 浅蓝色粉砂质极细砂和浅粉色粉砂互层,在事件G后,其显著向南东增厚 290 浅蓝灰色极细砂和细砂,极薄层-薄层 300 浅红棕色-粉色细砂和极细砂质粉砂,薄层 310 浅红棕色粉砂质细砂,顶界为浅红色极细砂质粉砂条带,薄层 320 浅红色极细砂,均一的中厚层 330 浅绿灰色-浅蓝灰色细砂、中砂-极细砂;粒径整体上向上减小,但中部夹一层浅红棕色极细砂-粉砂细层 340 浅灰色均一的细砂-粉砂,夹有粗砂层,中厚层 350 浅绿灰色细砂,厚度变化大,薄层 400 粉色极细砂-粉砂,薄层 410 红棕色极细砂和浅蓝灰色极细砂-粉砂,粒径向上减小,薄层 420 红棕色极细砂-细砂,浅蓝灰色极细砂质粉砂,红色程度向上变深,薄层-中厚层 430 浅灰色中细砂,顶界为一层浅蓝灰色极细砂-粘土,薄层 440 粉色-浅红色极细砂,中部夹一层浅灰色极细砂和细砂,薄层 445 绿灰色细砂和粗砂,呈透镜状,薄层-中厚层 450 粉色-浅红棕色极细砂-粉砂,上部夹一层浅蓝灰色粉砂层,薄层 460 浅灰色极细砂层,均一,中厚层 470 浅红色-红棕色极细砂质粉砂,向上红色越深 500 浅绿灰色细砂 510 浅红色极细砂-粉砂,上部夹一层浅蓝灰色极细砂条带;在中上部也发育不连续的浅蓝灰色条带 520 浅绿灰色细砂 530 浅灰色极细砂和浅红色极细砂质粉砂 540 浅绿灰色细砂 表 2 铜矿探槽年代样品数据
Table 2. Dating samples in the Copper Mine trenches
样品编号 实验室编号 地层单元 14C年代/BP 误差(1σ) 材料 校正后日历年代(2σ) 模型年代 ATF13-108 UCI-140086 50 170 25 残枝 AD1662~现今 AD1662~1953 ATF14-60 UCI-153557 50 390 110 残枝 AD1304~现今 AD1495~1799 ATF14-54 UCI-153558 100-1 330 20 残枝 AD1488~1640 AD1475~1632 ATF14-55 UCI-153559 100-4 565 20 残枝 AD1315~1419 AD1315~1419 ATF13-43 UCI-140087 110 905 25 残枝 AD1038~1204 AD1038~1202 ATF13-103 UCI-153560 110-2 1155 15 残枝 AD776~964 AD776~963 ATF13-62 UCI-153564 120-4 1515 15 残枝 437~601 BC / ATF13-104 UCI-153561 130 1320 45 残枝 AD631~776 AD542~609 ATF13-93 UCI-140088 150 2490 25 残枝 774~524 BC 653~417 BC ATF14-35 UCI-153562 150 360 90 残枝 AD1406~现今 / ATF14-38 UCI-153563 150 2460 80 残枝 780~405 BC 712~511 BC ATF14-58 UCI-153565 161 3000 15 残枝 1284~1132 BC / ATF13-102 UCI-153566 161a 2485 45 残枝 785~430 BC 733~571 BC ATF14-40 UCI-153567 162b 3025 20 残枝 1384~1213 BC / ATF14-39 UCI-153568 163 2440 15 残枝 738~412 BC 746~649 BC ATF13-94 UCI-140089 170 2800 25 残枝 1016~858 BC 1018~860 BC ATF15-9 Beta-420514 170 2990 30 残枝 1374~1118 BC 1293~1122 BC ATF13-42 UCI-140090 200 3230 25 粪便 1606~1433 BC 1339~1322 BC ATF14-56 UCI-153569 200-1 3030 15 残枝 1380~1222 BC 1376~1340 BC ATF14-31 Beta-420515 200-2 3000 30 残枝 1377~1126 BC 1395~1350 BC ATF14-34 UCI-153571 205 2445 15 残枝 747~413 BC / ATF14-50 UCI-153570 210 3325 15 残枝 1660~1533 BC 1658~1534 BC ATF14-44 UCI-153572 230 3410 20 残枝 1754~1642 BC 1753~1645 BC ATF14-46 UCI-153573 240 3545 15 残枝 1940~1780 BC 1939~1781 BC ATF13-46 UCI-140091 250 3625 25 残枝 2116~1911 BC 2031~1917 BC ATF14-29 UCI-153574 250 3650 25 残枝 2133~1943 BC 2133~1959 BC ATF13-120 UCI-140092 270 3755 30 残枝 2284~2041 BC 2285~2044 BC ATF14-25 UCI-153576 270 3980 15 残枝 2566~2467 BC 2566~2467 BC ATF13-22 UCI-140093 280 4385 25 残枝 3090~2917 BC / ATF14-45 UCI-153575 280 4090 15 残枝 2840~2574 BC 2629~2573 BC ATF13-25 UCI-153578 285-1 4080 15 残枝 2836~2504 BC 2661~2581 BC ATF14-59 UCI-153577 285 4365 20 残枝 3078~2912 BC / ATF13-92 UCI-140094 290 4115 25 残枝 2864~2578 BC 2703~2597 BC ATF13-02 UCI-140095 300 4145 25 树皮 2873~2613 BC 2752~2628 BC ATF13-20 UCI-140096 300/310 4110 30 残枝 2865~2575 BC 2833~2641 BC ATF13-28 UCI-140097 320上部 4180 25 残枝 2885~2673 BC 2856~2681 BC ATF13-16 UCI-140098 320中部 4135 25 残枝 2872~2620 BC 2870~2720 BC ATF13-66 UCI-153579 330 4180 20 残枝 2882~2679 BC 2886~2758 BC ATF13-18 UCI-140099 340 4370 25 残枝 3084~2911 BC 3082~2911 BC ATF13-121 UCI-140100 400 4730 120 残枝 3771~3105 BC / ATF14-42 UCI-153580 400 4465 20 残枝 3331~3028 BC 3332~3047 BC ATF13-27 UCI-140101 410 4540 30 粪便 3365~3104 BC 3366~3118 BC ATF13-29 UCI-140102 440 4620 60 残枝 3629~3106 BC 3472~3133 BC ATF13-51 UCI-140103 450 4665 25 树皮 3518~3369 BC 3481~3194 BC ATF13-30 UCI-140104 470 4485 25 残枝 3341~3091 BC / ATF14-37 UCI-153581 470 4925 15 残枝 3712~3653 BC 3714~3652 BC ATF13-23 UCI-140105 510 5885 25 残枝 4826~4707 BC / ATF13-107 UCI-140106 510 5780 30 残枝 4707~4550 BC 4707~4550 BC ATF13-100 UCI-140107 550 5990 35 残枝 4981~4791 BC 4977~4791 BC -
[1] Molnar P, Tapponnier P.Cenozoic tectonics of Asia:effects of a continental collision[J].Science, 1975, 189(4201):419-426. http://d.old.wanfangdata.com.cn/Conference/8633153
[2] Tapponnier P, Molnar P.Slip-line field theory and large-scale continental tectonics[J].Nature, 1976, 264(5584):319-324. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-264319a0/
[3] 丁国瑜.阿尔金活断层的古地震与分段[J].第四纪研究, 1995, 15(2):97-106. http://www.cnki.com.cn/Article/CJFDTotal-DSJJ502.000.htm
[4] Tapponnier P, Xu Z, Roger F, et al.Oblique stepwise rise and growth of the Tibet plateau[J].Science, 2001, 294(5547):1671-1677. http://d.old.wanfangdata.com.cn/NSTLQK/10.1126-science.105978/
[5] Ritts B D, Biffi U.Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J].Geological Society of America Bulletin, 2000, 112(1):61-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f840e7743f4c9e7095073113e763a5e6
[6] Yin A, Rumelhart P E, Butler R, et al.Tecctonic Historv of the Altyn Tagh fault in Northern Tibet Inferred from Cenozoic Sedimentation[J].Geological Society of America Bulletin, 2002, 114(10):1257-1295.
[7] 徐锡伟, Tapponnier P, Van Der Woerd J, 等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学(D辑), 2003, 33(10):967-974. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200310007
[8] Cowgill E, Gold R D, Chen X, et al.Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet[J].Geology, 2009, 37(7):647-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04b01be9403dca725345683cdb75f4c6
[9] 许志琴, 李海兵, 唐哲民, 等.大型走滑断裂对青藏高原地体构架的改造[J].岩石学报, 2011, 27(11):3157-3170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111001
[10] Wu L, Lin X, Cowgill E, et al.Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau[J].Geological Society of America Bulletin, 2019, 131(7/8):1157-1178.
[11] 国家地震局.阿尔金活动断裂带[M].北京:地震出版社, 1992:166-187.
[12] Zhang P, Molnar P, Xu X.Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J].Tectonics, 2007, 26(5):TC5010. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2006TC002014/
[13] He J, Vernant P, Chéry J, et al.Nailing down the slip rate of the Altyn Tagh fault[J].Geophysical Research Letters, 2013, 40(20):5382-5386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2013GL057497
[14] Li Y, Shan X, Qu C, et al.Crustal deformation of the Altyn Tagh fault based on GPS[J].Journal of Geophysical Research:Solid Earth, 2018.123(11):10309-10322. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB015814
[15] 徐锡伟, 谭锡, 吴国栋, 等.2008年于田Ms7.3地震地表破裂带特征及其构造属性讨论[J].地震地质, 2011, 33(2):462-471. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ201102024.htm
[16] 李海兵, 潘家伟, 孙志明, 等.2014年于田Ms7.3地震地表破裂特征及其发震构造[J].地质学报, 2015, 89(1):180-194. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201501014
[17] 张培震, 闵伟, 邓起东, 等.海原活动断裂带的古地震与强震复发规律[J].中国科学(D辑), 2003, 33(8):705-713. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200308001
[18] 陈杰, 陈宇坤, 丁国瑜, 等.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究, 2003, 23(6):629-639. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200306006
[19] Li H, Van der Woerd J, Tapponnier P, et al.Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake[J].Earth and Planetary Science Letters, 2005, 237(1/2):285-299.
[20] 闻学泽, 范军, 易桂喜, 等.川西安宁河断裂上的地震空区[J].中国科学(D辑), 2008, 38(7):797-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200807002
[21] 闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报, 1999, 21(4):411-418. http://d.old.wanfangdata.com.cn/Periodical/dizhen199904011
[22] 冉勇康, 邓起东.古地震学研究的历史, 现状和发展趋势[J].科学通报, 1999, 44(1):12-20. http://d.old.wanfangdata.com.cn/Periodical/kxtb199901003
[23] Washburn Z, Arrowsmith J R, Forman S L, et al.Late Holocene earthquake history of the central Altyn Tagh fault, China[J].Geology, 2001, 29(11):1051-1054. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-0091-7613(2001)029-1051-LHEHOT-2.0.CO%3b2/
[24] Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al.Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J].Annals of Geophysics, 2003, 46(5):1015-1034. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e5bd4d5225c6729ae3564ce9e216aada
[25] 徐锡伟, 于贵华, 陈桂华, 等.青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质, 2007, 29(2):201-217. http://d.old.wanfangdata.com.cn/Periodical/dzdz200702002
[26] 李康, 徐锡伟, 罗浩, 等.阿尔金断裂带阿克塞段半果巴探槽揭露的古地震事件[J].地震地质, 2016, 38(3):670-679. http://d.old.wanfangdata.com.cn/Periodical/dzdz201603013
[27] Luo H, Xu X, Gao Z, et al.Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China[J].Journal of Asian Earth Sciences, 2019, 173:263-274. http://www.researchgate.net/publication/330816528_Spatial_and_temporal_distribution_of_earthquake_ruptures_in_the_eastern_segment_of_the_Altyn_Tagh_fault_China
[28] Harris R A, Day S M.Dynamics of fault interaction:Parallel strike-slip faults[J].Journal of Geophysical Research, 1993, 98(B3):4461-4472. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-92JB02272/
[29] Zhang P, Mao F, Slemmons D.Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province[J].Tectonophysics, 1999, 308(1):37-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a21fb5048d5ef256e8261c89ca5c705
[30] Zoback M L, Jachens R C, Olson J A.Abrupt along-strike change in tectonic style:San Andreas Fault zone, San Francisco Peninsula[J].Journal of Geophysical Research, 1999, 104(B5):10719-10742. http://www.researchgate.net/publication/228920864_Abrupt_along-strike_change_in_tectonic_style_San_Andreas_fault_zone_San_Francisco_Peninsula
[31] Wesnousky S G.Predicting the endpoints of earthquake ruptures[J].Nature, 2006, 444:358-360. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-nature05275/
[32] Wesnousky S G.Displacement and Geometrical Characteristics of Earthquake Surface Ruptures:Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture[J].Bulletin of the Seismological Society of America, 2008, 98(4):1609-1632. http://d.old.wanfangdata.com.cn/NSTLQK/10.1785-0120070111/
[33] Washburn Z.Quaternary tectonics and earthquake geology of the Central Altyn Tagh Fault, Xinjiang, China: implications for tectonic process along the northern margin of Tibet[D].M.S.Thesis, Tempe, Arizona State University, 2001: 99-100.
[34] 李海兵, 杨经绥, 史仁灯, 等.阿尔金走滑断陷盆地的确定及其与山脉的关系[J].科学通报, 2002, 47(1):63-67. http://d.old.wanfangdata.com.cn/Periodical/kxtb200201014
[35] Ramsey C B, Lee S.Recent and planned developments of the program OxCal[J].Radiocarbon, 2013, 55(2/3):720-730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC55_02-JATS\RDC\RDC55_02\S0033822200057878h.xml
[36] Reimer P J, Bard E, Bayliss A, et al.Int Cal13 and Marine13 radio carbon age calibration curves 0-50000 years cal BP[J].Radiocarbon, 2013, 55(4):1869-1887. http://www.researchgate.net/publication/44160624_INTCAL09_AND_MARINE09_RADIOCARBON_AGE_CALIBRATION_CURVES_050000_YEARS_CAL_BP
[37] Scharer K M, Weldon Ⅱ R J, Fumal T E, et al.Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B C:A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons[J].Bulletin of the Seismological Society of America, 2007, 97(4):1054-1093. https://www.researchgate.net/publication/215614591_Past_and_Future_Earthquakes_on_the_San_Andreas_Fault
[38] Shao Y, Liu Z J, Oskin M E, et al.Paleoseismic investigation of the Aksay restraining double-bend, Altyn Tagh fault, and its implication for barrier-breaching ruptures[J].Journal of Geophysical Research:Solid Earth, 2018, 123(5):4307-4330. http://adsabs.harvard.edu/abs/2016AGUFM.T23B2929S
[39] Duan B, Oglesby D D.Multicycle dynamics of nonplanar strike-slip faults[J].Journal of Geophysical Research, 2005, 110(B3):B03304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1546e33e07291da6d4eccae5e9b1d008
[40] Elliott A J, Oskin M E, Liu-Zeng J, et al.Rupture termination at restraining bends:The last great earthquake on the Altyn Tagh Fault[J].Geophysical Research Letters, 2015, 42(7):2164-2170.
[41] Mériaux A S, Van der Woerd J, Tapponnier P, et al.The Pingding segment of the Altyn Tagh Fault (91°E):Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces[J].Journal of Geophysical Research:Solid Earth, 2012, 117(B9):B09406. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e5bd4d5225c6729ae3564ce9e216aada
[42] Wells D L, Coppersmith K J.New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J].Bulletin of the seismological Society of America, 1994, 84(4):974-1002. http://www.researchgate.net/publication/215755871_New_empirical_relationships_among_magnitude_rupture_length_rupture_width_rupture_area_and_surface_displacement
[43] Ellsworth W L, Matthews M V, Nadeau R M, et al.A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities[M].US Geological Survey Open-File Report, 1999:99-522.
[44] Matthews M V, Ellsworth W L, Reasenberg P A.A Brownian model for recurrent earthquakes[J].Bulletin of the Seismological Society of America, 2002, 92(6):2233-2250. http://d.old.wanfangdata.com.cn/NSTLQK/10.1785-0120010267/
-