阿尔金断裂索尔库里段铜矿探槽长序列古地震记录

袁兆德, 刘静, 王伟, 邵延秀, 李占飞, 李志刚. 阿尔金断裂索尔库里段铜矿探槽长序列古地震记录[J]. 地质通报, 2020, 39(2-3): 147-163.
引用本文: 袁兆德, 刘静, 王伟, 邵延秀, 李占飞, 李志刚. 阿尔金断裂索尔库里段铜矿探槽长序列古地震记录[J]. 地质通报, 2020, 39(2-3): 147-163.
YUAN Zhaode, LIU Jing, WANG Wei, SHAO Yanxiu, LI Zhanfei, LI Zhigang. Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault[J]. Geological Bulletin of China, 2020, 39(2-3): 147-163.
Citation: YUAN Zhaode, LIU Jing, WANG Wei, SHAO Yanxiu, LI Zhanfei, LI Zhigang. Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault[J]. Geological Bulletin of China, 2020, 39(2-3): 147-163.

阿尔金断裂索尔库里段铜矿探槽长序列古地震记录

  • 基金项目:
    国家自然科学基金项目《以阿尔金断裂中段为例,走滑断裂的几何构造结对断裂活动习性的控制作用》(批准号:U1839203)、国家自然科学基金青年基金项目《阿尔金断裂乌尊硝尔段古地震复发特征与级联破裂行为研究》(批准号:41902216)、中央级公益性科研院所基本科研业务项目(编号:IGCEA1814)
详细信息
    作者简介: 袁兆德(1986-), 男, 助理研究员, 从事古地震研究。E-mail:yzd19862922@163.com
  • 中图分类号: P618.41;P315.2+1

Long records of paleoearthquakes along the Xorkoli section of the Altyn Tagh fault

  • 长序列古地震记录是理解断裂地震复发行为的关键,亦是区域地震危险性评价的重要基础。阿尔金断裂作为世界上最长的走滑断裂之一,其大地震复发行为一直是地震地质学家关注的重点。在该断裂中段索尔库里段开挖的探槽记录了8~9次古地震事件,发生时间分别为AD1598(1491~1740)、AD796(676~926)、668(732~590)BC、956(1206~716)BC、1301(1369~1235)BC、2105(2232~1987)BC、2664(2731~2601)BC、2818(2878~2742)BC和3411(3521~3205)BC。平均复发周期为620±410 a,变异系数为0.67,显示了弱准周期性。通过与其他研究点位的古地震数据对比,发现只有部分强震扩展至阿克塞弯曲内部。根据古地震复发周期和最新一次古地震的离逝时间,计算结果表明索尔库里段已经累积了3.3~4.6m的位移量,相当于Mw7.4~7.7地震,且未来30年发生强震的概率为0.07。

  • 加载中
  • 图 1  印度-欧亚碰撞带断层分布图(a)、阿尔金断裂中段断裂展布图及探槽位置图(b)、铜矿探槽Google Earth影像解译图(c)和铜矿探槽分布图(d)

    Figure 1. 

    图 2  铜矿探槽地层柱状图及样品OxCal分析图

    Figure 2. 

    图 3  T1探槽解译图

    Figure 3. 

    图 4  T2探槽解译图

    Figure 4. 

    图 5  古地震事件A识别证据

    Figure 5. 

    图 6  古地震事件B、C、D、E识别证据

    Figure 6. 

    图 7  古地震事件E识别证据

    Figure 7. 

    图 8  古地震事件F、G、H、I识别证据

    Figure 8. 

    图 9  铜矿探槽地震事件年代OxCal分析图

    Figure 9. 

    图 10  古地震事件层位事件证据评分统计分析图

    Figure 10. 

    图 11  铜矿探槽与附近古地震数据对比图

    Figure 11. 

    表 1  铜矿探槽地层单元划分及其特征

    Table 1.  Summary of stratigraphy exposed in the Copper Mine trenches

    地层
    编号
    描述
    50由两套地层组成,下部为浅蓝灰色极细砂-细砂,只发育在断层带形成的断陷塘里;上部为浅蓝灰色极细砂至粉砂,在所有部位均可见
    100-1浅红色极细砂-粉砂
    100-2浅红灰色中砂
    100-3浅红色粉砂
    100-4正粒序韵律,从灰色粗砂至浅红色极细砂
    110-1a浅粉色极细砂和浅灰色极细砂-粉砂
    110-1b与地层110-1a相似,底界为一层浅灰色粉砂薄层
    110-2下部为浅红色极细砂;上部为浅灰色极细砂-粉砂
    110-3浅红色粉砂和浅棕色极细砂,特征明显,在所有部位均可见
    120浅蓝灰色极细砂-粉砂,厚度变化较大;该层在断层带断陷位置明显增厚,偶还夹有若干层浅红色粉砂
    130粉色极细砂-细砂,地层厚度略有变化
    140蓝灰色细砂,厚度有变化
    150浅蓝灰色极细砂,厚度有变化,但在所有部位均可见
    161a浅红色-粉色极细砂-粉砂,厚度有变化,局部地层
    161b蓝灰色细砂,厚度有变化,局部地层
    162a浅蓝灰色极细砂,局部地层
    162b浅红棕色细砂-极细砂,局部地层
    163浅红棕色极细砂-粉砂,局部地层
    164浅红棕色极细砂-粉砂,局部地层
    165浅粉色极细砂,局部地层
    170粉色极细砂-粉砂,厚度轻微变化
    180蓝灰色细砂,薄层
    190浅蓝灰色细砂,顶界为粉色极细砂薄层
    200粉色极细砂-粉砂,中厚层
    205浅棕色极细砂,只分布在主断层带北侧
    210浅灰色极细砂,中厚层
    220浅灰色-浅红棕色细砂、中砂,粒度向上变粗,薄层
    230浅红色-粉色极细砂-粉砂,中厚层
    240浅灰色-浅蓝灰色中砂-极细砂、粉砂,粒度向上变细,颜色向下变深,薄层
    250浅红色-粉色极细砂-粉砂,夹几层浅蓝灰色极细砂条带,中厚-厚层
    260浅绿灰色细砂,厚度向南变薄直至消失,薄层
    270整体上呈粉色-浅红色极细砂-粉砂,夹不连续展布的浅灰绿色极细砂条带,中-厚层
    280浅蓝色粉砂质极细砂和浅粉色粉砂互层,在事件G后,其显著向南东增厚
    290浅蓝灰色极细砂和细砂,极薄层-薄层
    300浅红棕色-粉色细砂和极细砂质粉砂,薄层
    310浅红棕色粉砂质细砂,顶界为浅红色极细砂质粉砂条带,薄层
    320浅红色极细砂,均一的中厚层
    330浅绿灰色-浅蓝灰色细砂、中砂-极细砂;粒径整体上向上减小,但中部夹一层浅红棕色极细砂-粉砂细层
    340浅灰色均一的细砂-粉砂,夹有粗砂层,中厚层
    350浅绿灰色细砂,厚度变化大,薄层
    400粉色极细砂-粉砂,薄层
    410红棕色极细砂和浅蓝灰色极细砂-粉砂,粒径向上减小,薄层
    420红棕色极细砂-细砂,浅蓝灰色极细砂质粉砂,红色程度向上变深,薄层-中厚层
    430浅灰色中细砂,顶界为一层浅蓝灰色极细砂-粘土,薄层
    440粉色-浅红色极细砂,中部夹一层浅灰色极细砂和细砂,薄层
    445绿灰色细砂和粗砂,呈透镜状,薄层-中厚层
    450粉色-浅红棕色极细砂-粉砂,上部夹一层浅蓝灰色粉砂层,薄层
    460浅灰色极细砂层,均一,中厚层
    470浅红色-红棕色极细砂质粉砂,向上红色越深
    500浅绿灰色细砂
    510浅红色极细砂-粉砂,上部夹一层浅蓝灰色极细砂条带;在中上部也发育不连续的浅蓝灰色条带
    520浅绿灰色细砂
    530浅灰色极细砂和浅红色极细砂质粉砂
    540浅绿灰色细砂
    下载: 导出CSV

    表 2  铜矿探槽年代样品数据

    Table 2.  Dating samples in the Copper Mine trenches

    样品编号实验室编号地层单元14C年代/BP误差(1σ)材料校正后日历年代(2σ)模型年代
    ATF13-108UCI-1400865017025残枝AD1662~现今AD1662~1953
    ATF14-60UCI-15355750390110残枝AD1304~现今AD1495~1799
    ATF14-54UCI-153558100-133020残枝AD1488~1640AD1475~1632
    ATF14-55UCI-153559100-456520残枝AD1315~1419AD1315~1419
    ATF13-43UCI-14008711090525残枝AD1038~1204AD1038~1202
    ATF13-103UCI-153560110-2115515残枝AD776~964AD776~963
    ATF13-62UCI-153564120-4151515残枝437~601 BC/
    ATF13-104UCI-153561130132045残枝AD631~776AD542~609
    ATF13-93UCI-140088150249025残枝774~524 BC653~417 BC
    ATF14-35UCI-15356215036090残枝AD1406~现今/
    ATF14-38UCI-153563150246080残枝780~405 BC712~511 BC
    ATF14-58UCI-153565161300015残枝1284~1132 BC/
    ATF13-102UCI-153566161a248545残枝785~430 BC733~571 BC
    ATF14-40UCI-153567162b302520残枝1384~1213 BC/
    ATF14-39UCI-153568163244015残枝738~412 BC746~649 BC
    ATF13-94UCI-140089170280025残枝1016~858 BC1018~860 BC
    ATF15-9Beta-420514170299030残枝1374~1118 BC1293~1122 BC
    ATF13-42UCI-140090200323025粪便1606~1433 BC1339~1322 BC
    ATF14-56UCI-153569200-1303015残枝1380~1222 BC1376~1340 BC
    ATF14-31Beta-420515200-2300030残枝1377~1126 BC1395~1350 BC
    ATF14-34UCI-153571205244515残枝747~413 BC/
    ATF14-50UCI-153570210332515残枝1660~1533 BC1658~1534 BC
    ATF14-44UCI-153572230341020残枝1754~1642 BC1753~1645 BC
    ATF14-46UCI-153573240354515残枝1940~1780 BC1939~1781 BC
    ATF13-46UCI-140091250362525残枝2116~1911 BC2031~1917 BC
    ATF14-29UCI-153574250365025残枝2133~1943 BC2133~1959 BC
    ATF13-120UCI-140092270375530残枝2284~2041 BC2285~2044 BC
    ATF14-25UCI-153576270398015残枝2566~2467 BC2566~2467 BC
    ATF13-22UCI-140093280438525残枝3090~2917 BC/
    ATF14-45UCI-153575280409015残枝2840~2574 BC2629~2573 BC
    ATF13-25UCI-153578285-1408015残枝2836~2504 BC2661~2581 BC
    ATF14-59UCI-153577285436520残枝3078~2912 BC/
    ATF13-92UCI-140094290411525残枝2864~2578 BC2703~2597 BC
    ATF13-02UCI-140095300414525树皮2873~2613 BC2752~2628 BC
    ATF13-20UCI-140096300/310411030残枝2865~2575 BC2833~2641 BC
    ATF13-28UCI-140097320上部418025残枝2885~2673 BC2856~2681 BC
    ATF13-16UCI-140098320中部413525残枝2872~2620 BC2870~2720 BC
    ATF13-66UCI-153579330418020残枝2882~2679 BC2886~2758 BC
    ATF13-18UCI-140099340437025残枝3084~2911 BC3082~2911 BC
    ATF13-121UCI-1401004004730120残枝3771~3105 BC/
    ATF14-42UCI-153580400446520残枝3331~3028 BC3332~3047 BC
    ATF13-27UCI-140101410454030粪便3365~3104 BC3366~3118 BC
    ATF13-29UCI-140102440462060残枝3629~3106 BC3472~3133 BC
    ATF13-51UCI-140103450466525树皮3518~3369 BC3481~3194 BC
    ATF13-30UCI-140104470448525残枝3341~3091 BC/
    ATF14-37UCI-153581470492515残枝3712~3653 BC3714~3652 BC
    ATF13-23UCI-140105510588525残枝4826~4707 BC/
    ATF13-107UCI-140106510578030残枝4707~4550 BC4707~4550 BC
    ATF13-100UCI-140107550599035残枝4981~4791 BC4977~4791 BC
    下载: 导出CSV
  • [1]

    Molnar P, Tapponnier P.Cenozoic tectonics of Asia:effects of a continental collision[J].Science, 1975, 189(4201):419-426. http://d.old.wanfangdata.com.cn/Conference/8633153

    [2]

    Tapponnier P, Molnar P.Slip-line field theory and large-scale continental tectonics[J].Nature, 1976, 264(5584):319-324. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-264319a0/

    [3]

    丁国瑜.阿尔金活断层的古地震与分段[J].第四纪研究, 1995, 15(2):97-106. http://www.cnki.com.cn/Article/CJFDTotal-DSJJ502.000.htm

    [4]

    Tapponnier P, Xu Z, Roger F, et al.Oblique stepwise rise and growth of the Tibet plateau[J].Science, 2001, 294(5547):1671-1677. http://d.old.wanfangdata.com.cn/NSTLQK/10.1126-science.105978/

    [5]

    Ritts B D, Biffi U.Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J].Geological Society of America Bulletin, 2000, 112(1):61-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f840e7743f4c9e7095073113e763a5e6

    [6]

    Yin A, Rumelhart P E, Butler R, et al.Tecctonic Historv of the Altyn Tagh fault in Northern Tibet Inferred from Cenozoic Sedimentation[J].Geological Society of America Bulletin, 2002, 114(10):1257-1295.

    [7]

    徐锡伟, Tapponnier P, Van Der Woerd J, 等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学(D辑), 2003, 33(10):967-974. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200310007

    [8]

    Cowgill E, Gold R D, Chen X, et al.Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet[J].Geology, 2009, 37(7):647-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04b01be9403dca725345683cdb75f4c6

    [9]

    许志琴, 李海兵, 唐哲民, 等.大型走滑断裂对青藏高原地体构架的改造[J].岩石学报, 2011, 27(11):3157-3170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111001

    [10]

    Wu L, Lin X, Cowgill E, et al.Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau[J].Geological Society of America Bulletin, 2019, 131(7/8):1157-1178.

    [11]

    国家地震局.阿尔金活动断裂带[M].北京:地震出版社, 1992:166-187.

    [12]

    Zhang P, Molnar P, Xu X.Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J].Tectonics, 2007, 26(5):TC5010. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2006TC002014/

    [13]

    He J, Vernant P, Chéry J, et al.Nailing down the slip rate of the Altyn Tagh fault[J].Geophysical Research Letters, 2013, 40(20):5382-5386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2013GL057497

    [14]

    Li Y, Shan X, Qu C, et al.Crustal deformation of the Altyn Tagh fault based on GPS[J].Journal of Geophysical Research:Solid Earth, 2018.123(11):10309-10322. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB015814

    [15]

    徐锡伟, 谭锡, 吴国栋, 等.2008年于田Ms7.3地震地表破裂带特征及其构造属性讨论[J].地震地质, 2011, 33(2):462-471. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ201102024.htm

    [16]

    李海兵, 潘家伟, 孙志明, 等.2014年于田Ms7.3地震地表破裂特征及其发震构造[J].地质学报, 2015, 89(1):180-194. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201501014

    [17]

    张培震, 闵伟, 邓起东, 等.海原活动断裂带的古地震与强震复发规律[J].中国科学(D辑), 2003, 33(8):705-713. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200308001

    [18]

    陈杰, 陈宇坤, 丁国瑜, 等.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究, 2003, 23(6):629-639. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200306006

    [19]

    Li H, Van der Woerd J, Tapponnier P, et al.Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake[J].Earth and Planetary Science Letters, 2005, 237(1/2):285-299.

    [20]

    闻学泽, 范军, 易桂喜, 等.川西安宁河断裂上的地震空区[J].中国科学(D辑), 2008, 38(7):797-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200807002

    [21]

    闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报, 1999, 21(4):411-418. http://d.old.wanfangdata.com.cn/Periodical/dizhen199904011

    [22]

    冉勇康, 邓起东.古地震学研究的历史, 现状和发展趋势[J].科学通报, 1999, 44(1):12-20. http://d.old.wanfangdata.com.cn/Periodical/kxtb199901003

    [23]

    Washburn Z, Arrowsmith J R, Forman S L, et al.Late Holocene earthquake history of the central Altyn Tagh fault, China[J].Geology, 2001, 29(11):1051-1054. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-0091-7613(2001)029-1051-LHEHOT-2.0.CO%3b2/

    [24]

    Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al.Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J].Annals of Geophysics, 2003, 46(5):1015-1034. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e5bd4d5225c6729ae3564ce9e216aada

    [25]

    徐锡伟, 于贵华, 陈桂华, 等.青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质, 2007, 29(2):201-217. http://d.old.wanfangdata.com.cn/Periodical/dzdz200702002

    [26]

    李康, 徐锡伟, 罗浩, 等.阿尔金断裂带阿克塞段半果巴探槽揭露的古地震事件[J].地震地质, 2016, 38(3):670-679. http://d.old.wanfangdata.com.cn/Periodical/dzdz201603013

    [27]

    Luo H, Xu X, Gao Z, et al.Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China[J].Journal of Asian Earth Sciences, 2019, 173:263-274. http://www.researchgate.net/publication/330816528_Spatial_and_temporal_distribution_of_earthquake_ruptures_in_the_eastern_segment_of_the_Altyn_Tagh_fault_China

    [28]

    Harris R A, Day S M.Dynamics of fault interaction:Parallel strike-slip faults[J].Journal of Geophysical Research, 1993, 98(B3):4461-4472. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-92JB02272/

    [29]

    Zhang P, Mao F, Slemmons D.Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province[J].Tectonophysics, 1999, 308(1):37-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a21fb5048d5ef256e8261c89ca5c705

    [30]

    Zoback M L, Jachens R C, Olson J A.Abrupt along-strike change in tectonic style:San Andreas Fault zone, San Francisco Peninsula[J].Journal of Geophysical Research, 1999, 104(B5):10719-10742. http://www.researchgate.net/publication/228920864_Abrupt_along-strike_change_in_tectonic_style_San_Andreas_fault_zone_San_Francisco_Peninsula

    [31]

    Wesnousky S G.Predicting the endpoints of earthquake ruptures[J].Nature, 2006, 444:358-360. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-nature05275/

    [32]

    Wesnousky S G.Displacement and Geometrical Characteristics of Earthquake Surface Ruptures:Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture[J].Bulletin of the Seismological Society of America, 2008, 98(4):1609-1632. http://d.old.wanfangdata.com.cn/NSTLQK/10.1785-0120070111/

    [33]

    Washburn Z.Quaternary tectonics and earthquake geology of the Central Altyn Tagh Fault, Xinjiang, China: implications for tectonic process along the northern margin of Tibet[D].M.S.Thesis, Tempe, Arizona State University, 2001: 99-100.

    [34]

    李海兵, 杨经绥, 史仁灯, 等.阿尔金走滑断陷盆地的确定及其与山脉的关系[J].科学通报, 2002, 47(1):63-67. http://d.old.wanfangdata.com.cn/Periodical/kxtb200201014

    [35]

    Ramsey C B, Lee S.Recent and planned developments of the program OxCal[J].Radiocarbon, 2013, 55(2/3):720-730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC55_02-JATS\RDC\RDC55_02\S0033822200057878h.xml

    [36]

    Reimer P J, Bard E, Bayliss A, et al.Int Cal13 and Marine13 radio carbon age calibration curves 0-50000 years cal BP[J].Radiocarbon, 2013, 55(4):1869-1887. http://www.researchgate.net/publication/44160624_INTCAL09_AND_MARINE09_RADIOCARBON_AGE_CALIBRATION_CURVES_050000_YEARS_CAL_BP

    [37]

    Scharer K M, Weldon Ⅱ R J, Fumal T E, et al.Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B C:A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons[J].Bulletin of the Seismological Society of America, 2007, 97(4):1054-1093. https://www.researchgate.net/publication/215614591_Past_and_Future_Earthquakes_on_the_San_Andreas_Fault

    [38]

    Shao Y, Liu Z J, Oskin M E, et al.Paleoseismic investigation of the Aksay restraining double-bend, Altyn Tagh fault, and its implication for barrier-breaching ruptures[J].Journal of Geophysical Research:Solid Earth, 2018, 123(5):4307-4330. http://adsabs.harvard.edu/abs/2016AGUFM.T23B2929S

    [39]

    Duan B, Oglesby D D.Multicycle dynamics of nonplanar strike-slip faults[J].Journal of Geophysical Research, 2005, 110(B3):B03304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1546e33e07291da6d4eccae5e9b1d008

    [40]

    Elliott A J, Oskin M E, Liu-Zeng J, et al.Rupture termination at restraining bends:The last great earthquake on the Altyn Tagh Fault[J].Geophysical Research Letters, 2015, 42(7):2164-2170.

    [41]

    Mériaux A S, Van der Woerd J, Tapponnier P, et al.The Pingding segment of the Altyn Tagh Fault (91°E):Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces[J].Journal of Geophysical Research:Solid Earth, 2012, 117(B9):B09406. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e5bd4d5225c6729ae3564ce9e216aada

    [42]

    Wells D L, Coppersmith K J.New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J].Bulletin of the seismological Society of America, 1994, 84(4):974-1002. http://www.researchgate.net/publication/215755871_New_empirical_relationships_among_magnitude_rupture_length_rupture_width_rupture_area_and_surface_displacement

    [43]

    Ellsworth W L, Matthews M V, Nadeau R M, et al.A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities[M].US Geological Survey Open-File Report, 1999:99-522.

    [44]

    Matthews M V, Ellsworth W L, Reasenberg P A.A Brownian model for recurrent earthquakes[J].Bulletin of the Seismological Society of America, 2002, 92(6):2233-2250. http://d.old.wanfangdata.com.cn/NSTLQK/10.1785-0120010267/

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1708
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2019-11-18
修回日期:  2020-01-09
刊出日期:  2020-03-15

目录