哀牢山构造带南段马玉花岗闪长岩地球化学特征及其锆石U-Pb年龄

孙崇波, 李忠权, 王道永, 陈晓东. 哀牢山构造带南段马玉花岗闪长岩地球化学特征及其锆石U-Pb年龄[J]. 地质通报, 2019, 38(2-3): 223-230.
引用本文: 孙崇波, 李忠权, 王道永, 陈晓东. 哀牢山构造带南段马玉花岗闪长岩地球化学特征及其锆石U-Pb年龄[J]. 地质通报, 2019, 38(2-3): 223-230.
SUN Chongbo, LI Zhongquan, WANG Daoyong, CHEN Xiaodong. Petrogeochemistry and zircon U-Pb age of the Mayu granodiorite in the southern section of Ailaoshan tectonic belt[J]. Geological Bulletin of China, 2019, 38(2-3): 223-230.
Citation: SUN Chongbo, LI Zhongquan, WANG Daoyong, CHEN Xiaodong. Petrogeochemistry and zircon U-Pb age of the Mayu granodiorite in the southern section of Ailaoshan tectonic belt[J]. Geological Bulletin of China, 2019, 38(2-3): 223-230.

哀牢山构造带南段马玉花岗闪长岩地球化学特征及其锆石U-Pb年龄

  • 基金项目:
    中国地质调查局项目《西南三江成矿带南段基础地质调查》(编号:1212010880406)和《云南1:5万骂尼街等四幅区域地质矿产调查》(编号:1212011120582)
详细信息
    作者简介: 孙崇波(1985-), 男, 在读博士生, 构造地质学专业。E-mail:1315333036@qq.com
  • 中图分类号: P588.12+2

Petrogeochemistry and zircon U-Pb age of the Mayu granodiorite in the southern section of Ailaoshan tectonic belt

  • 对云南墨江县马玉花岗闪长岩进行了锆石U-Pb年龄和岩石地球化学分析。LA-ICP-MS锆石U-Pb测年显示,马玉花岗闪长岩年龄为263.6±2.4Ma,形成于晚二叠世。岩石地球化学显示,马玉花岗闪长岩SiO2含量为59.56%~70.50%,全碱(Na2O+K2O)含量为5.16%~7.92%,且Na2O>K2O;岩石富集轻稀土元素,负Eu异常明显(δEu=0.84~1.32),相对富集Sc、Hf,相对贫化Sr、Zr、Th、U。构造环境判别图解显示,马玉花岗闪长岩形成于碰撞期后板内构造环境,说明哀牢山构造带的古特提斯支洋或弧后盆地在晚二叠世(263.6±2.4Ma)已经闭合。

  • 加载中
  • 图 1  区域构造图(a)及研究区地质略图(b)

    Figure 1. 

    图 2  马玉花岗闪长岩锆石阴极发光(CL)图像

    Figure 2. 

    图 3  马玉花岗闪长岩锆石U-Pb谐和图(a)及年龄加权平均图(b)

    Figure 3. 

    图 4  R1-R2图解(据参考文献[25]修改)

    Figure 4. 

    图 5  构造环境图解(据参考文献[26]修改)

    Figure 5. 

    图 6  马玉花岗闪长岩稀土元素配分模式图(a)和原始地幔标准化蛛网图(b)(标准值据参考文献[27])

    Figure 6. 

    表 1  马玉花岗闪长岩LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb analyses of the Mayu granodiorite

    样品号 含量/10-6 同位素比值 年龄/Ma
    Pb U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    PM34H1 146 3717 0.04151 0.00036 0.2938 0.0020 0.05132 0.00022 262.2 2.3 261.5 1.7 255.2 9.7
    PM34H2 6 141 0.04075 0.00039 0.3150 0.0104 0.05606 0.00179 257.5 2.5 278.0 9.2 454.6 70.9
    PM34H3 34 816 0.04201 0.00047 0.3149 0.0033 0.05438 0.00051 265.2 3.0 278.0 2.9 386.7 21.2
    PM34H4 13 306 0.04267 0.00073 0.2937 0.0068 0.04993 0.00104 269.3 4.6 261.5 6.0 191.6 48.5
    PM34H5 142 3588 0.04222 0.00040 0.2971 0.0022 0.05104 0.00022 266.6 2.5 264.2 2.0 242.6 9.7
    PM34H6 28 676 0.04313 0.00055 0.3196 0.0044 0.05374 0.00050 272.2 3.4 281.6 3.9 360.1 20.9
    PM34H7 18 408 0.04207 0.00035 0.3078 0.0044 0.05306 0.00075 265.7 2.2 272.5 3.9 331.2 32.0
    PM34H8 190 4620 0.04248 0.00055 0.3128 0.0039 0.05341 0.00026 268.2 3.5 276.3 3.5 346.1 10.9
    PM34H9 31 725 0.04263 0.00036 0.3030 0.0025 0.05156 0.00034 269.1 2.3 268.8 2.2 265.9 15.2
    PM34H10 23 563 0.04100 0.00034 0.3009 0.0031 0.05323 0.00056 259.0 2.1 267.1 2.7 338.5 23.9
    PM34H11 38 992 0.04080 0.00037 0.2864 0.0024 0.05091 0.00031 257.8 2.3 255.7 2.2 236.9 14.0
    PM34H12 15 350 0.04074 0.00044 0.2855 0.0065 0.05083 0.00100 257.4 2.8 255.0 5.8 232.9 45.6
    PM34H13 17 414 0.04329 0.00067 0.3116 0.0062 0.05221 0.00079 273.2 4.2 275.5 5.5 294.8 34.7
    PM34H14 24 497 0.04137 0.00046 0.3063 0.0050 0.05370 0.00072 261.3 2.9 271.3 4.4 358.4 30.0
    PM34H15 18 419 0.04265 0.00042 0.3170 0.0040 0.05390 0.00058 269.2 2.6 279.6 3.5 367.0 24.2
    PM34H16 105 2606 0.04177 0.00032 0.2963 0.0017 0.05155 0.00022 263.8 2.0 263.5 1.5 261.0 9.8
    PM34H17 10 230 0.04126 0.00041 0.3125 0.0067 0.05493 0.00112 260.6 2.6 276.1 5.9 409.3 45.7
    下载: 导出CSV

    表 2  马玉花岗闪长岩主量、微量和稀土元素分析数据

    Table 2.  Major, trace and rare earth element compositions of the Mayu granodiorite

    样号 PM34H1 PM34H2 PM34H3 PM34H4 PM34H5 PM34H6 PM34H7 PM34H8
    SiO2 59.56 69.47 68.34 69.62 70.50 66.93 66.71 66.7
    Al2O3 14.46 13.60 13.14 14.45 14.08 16.21 14.89 15.09
    Fe2O3 1.48 0.63 0.99 0.43 0.88 1.95 1.95 1.28
    FeO 5.67 2.62 3.30 2.54 2.07 2.44 2.47 2.97
    P2O5 0.22 0.13 0.16 0.09 0.079 0.091 0.13 0.13
    K2O 2.55 3.62 3.81 3.87 4.04 3.38 2.56 2.88
    Na2O 2.61 4.30 2.80 3.41 3.34 3.24 4.03 3.19
    MgO 5.04 1.74 2.16 0.86 0.88 1.44 1.40 1.46
    CaO 3.45 1.69 3.17 2.76 1.93 0.61 1.93 4.25
    TiO2 0.89 0.35 0.49 0.36 0.36 0.51 0.56 0.53
    MnO 0.110 0.049 0.056 0.052 0.042 0.060 0.067 0.062
    烧失量 3.58 1.72 1.54 1.36 1.86 3.02 3.20 1.42
    总量 99.62 99.92 99.96 99.8 100.06 99.88 99.9 99.96
    Q 17.41 23.54 26.84 26.8 29.76 31.78 27.37 25.33
    An 16.32 7.25 12.23 12.89 9.22 2.51 9.03 18.62
    Ab 23.00 37.05 24.07 29.31 28.78 28.31 35.27 27.39
    Or 15.69 21.79 22.88 23.23 24.31 20.63 15.65 17.27
    C 1.73 0 0 0 0.91 6.54 2.37 0
    Di 0 0.35 2.21 0.35 0 0 0 1.58
    Hy 21.32 8.11 8.99 5.87 4.84 6.36 6.24 6.6
    Il 1.76 0.68 0.95 0.69 0.7o 1.00 1.1o 1.02
    Mt 2.23 0.93 1.46 0.63 1.3 2.66 2.67 1.88
    Ap 0.53 0.31 0.38 0.21 0.19 0.22 0.31 0.31
    DI 56.1 82.38 73.79 79.34 82.85 80.72 78.29 69.99
    SI 29.05 13.48 16.54 7.74 7.85 11.58 11.3 12.39
    AR 1.81 3.15 2.36 2.47 2.71 2.3 2.29 1.91
    σ 1.52 2.34 1.71 1.97 1.96 1.79 1.79 1.54
    NK 5.16 7.92 6.61 7.28 7.38 6.62 6.59 6.07
    A/CNK 1.085 0.967 0.907 0.975 1.053 1.605 1.153 0.938
    Sc 19 7.88 9.12 7.6 6.89 10.3 10.7 10.2
    Cr 107.00 38.90 53.10 9.87 13.30 14.40 15.70 16.20
    Co 21.1 6.18 9.43 5.4 5.02 8.28 8.25 8.28
    Ni 22.2 11.5 18.0 6.80 4.82 5.80 5.88 8.02
    Zn 90.0 44.4 64.0 49.2 35.2 59.8 83.3 63.7
    Rb 95.6 108 125 123 127 133 104 103
    Sr 470 203 413 251 271 277 173 278
    Cs 5.47 5.74 6.62 9.98 14.80 10.70 6.98 8.11
    Ba 754 1279 1092 637 738 1129 606 598
    Zr 122 162 187 116 98.9 155 144 127
    Ta 0.83 0.99 0.87 1.00 0.98 1.05 1.08 0.96
    Th 6.43 16.9 15.5 16.8 16.7 15.3 14.2 13.4
    U 1.45 2.48 1.95 3.40 2.64 2.29 3.50 2.21
    Hf 3.37 4.64 5.18 3.41 2.74 4.30 4.21 3.51
    Mo 0.17 0.08 0.16 0.20 0.19 0.06 0.07 0.18
    W 0.34 0.57 0.40 0.41 0.72 1.55 0.84 0.31
    Sn 2.1 3.1 2.2 2.6 1.8 1.7 2.3 2.2
    As 2.80 5.32 0.87 2.06 1.88 0.97 2.88 1.39
    Sb 0.69 1.71 0.18 0.17 0.33 0.58 0.97 0.29
    Ag 0.033 < 0.020 0.026 < 0.020 0.040 0.030 0.023 0.026
    Au 0.50 0.37 0.35 0.55 0.86 0.36 0.34 0.40
    Cu 10.80 3.35 4.42 2.01 11.00 3.78 4.61 4.09
    Gd 5.58 5.46 4.51 15.1 6.11 5.50 6.03 5.64
    Tb 1.03 0.86 0.68 2.58 1.03 0.97 1.15 0.99
    Dy 4.93 3.26 2.64 12.7 5.19 5.14 6.50 5.22
    Ho 1.08 0.62 0.57 2.88 1.22 1.07 1.34 1.10
    Er 3.15 1.84 1.64 8.06 3.48 3.21 4.15 3.30
    Tm 0.45 0.23 0.22 1.07 0.55 0.49 0.65 0.49
    Yb 2.80 1.52 1.47 6.02 3.46 3.05 4.13 3.11
    Lu 0.39 0.21 0.21 0.82 0.46 0.44 0.55 0.42
    Y 26.3 15.8 13.0 80.6 27.5 24.3 31.3 25.2
    ΣREE 147.13 241.54 189.47 324.46 179.94 167.93 166.46 159.32
    LREE 127.72 227.54 177.53 275.23 158.44 148.06 141.96 139.05
    HREE 19.41 14.00 11.94 49.23 21.50 19.87 24.50 20.27
    LREE/HREE 6.58 16.25 14.87 5.59 7.37 7.45 5.79 6.86
    LaN/YbN 6.81 26.62 21.62 13.23 8.40 8.51 6.57 8.14
    δEu 0.84 1.16 1.16 0.86 0.84 1.01 1.21 0.96
    δCe 0.92 1.01 0.92 0.32 0.9 0.96 0.80 0.91
    注:主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV
  • [1]

    钟大赉.滇川西部古特提斯造山带[M].北京:科学出版社, 1998:1-231.

    [2]

    方维萱, 胡瑞忠, 谢桂青, 等.云南哀牢山地区构造岩石地层单元及其构造演化[J].大地构造与成矿学, 2002, 26(1):28-36. doi: 10.3969/j.issn.1001-1552.2002.01.006

    [3]

    Fan W M, Wang Y J, Zhang F F, et al. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Ceochemical, isotopic and geochronol evidence from the Mojiang volcanic rocks, Southwest China[J]. Lithos, 2010, 119(3/4):553-568.

    [4]

    云南地矿局.云南省区域地质志[M].北京:地质出版社, 1990:400-450.

    [5]

    丛柏林, 吴根耀, 张旗, 等.中国滇西古特提斯构造带岩石大地构造演化[J].中国科学(D辑), 1993, 23(11):1201-1207.

    [6]

    Metcalfe Ⅰ. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asia crustal fragments:The Korean Peninsula in context[J]. Gondwana Research, 2006, 9(1/2):24-46.

    [7]

    Wang Y J, Zhang A M, Fan W M, et al. Petrogenesis of late Triastonic zone, southwest China, and tectonic implications for the evolution of the eastern Paleotethys geochronological and geochemical constraints[J]. Lithos, 2010, 120(3/4):529-546.

    [8]

    Jian P, Liu D Y, Kroner A Z, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(1):Geochemistry of ophiolites, arc/back-arc assemblages and withinplate igneous rocks[J]. Lithos, 2009, 113(3/4):748-766.

    [9]

    刘俊来, 唐渊, 宋志杰, 等.滇西哀牢山构造带:构造与演化[J].吉林大学学报(地球科学报), 2011, 41(5):1285-1303. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201105003

    [10]

    张玉泉, 夏斌, 梁华英, 等.云南大平糜棱岩化碱性花岗岩的锆石特征及其地质意义[J].高校地质学报, 2004, 10(3):378-384. doi: 10.3969/j.issn.1006-7493.2004.03.008

    [11]

    李宝龙, 季建清, 付孝悦, 等.滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义[J].岩石学报, 2008, 24(10):207-211. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200810013

    [12]

    张旗, 潘国强, 李承东, 等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11):2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002

    [13]

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001

    [14]

    王洪亮, 何世平, 陈隽璐, 等.北秦岭西段胡店片麻状二长花岗岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].中国地质, 2007, 34(1):17-25. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200701003

    [15]

    赵海杰, 毛景文, 叶会寿, 等.陕西黄龙铺地区碱性花岗斑岩及辉绿岩的年代学与地球化学:岩石成因及其构造环境示踪[J].中国地质, 2010, 37(1):12-27. doi: 10.3969/j.issn.1000-3657.2010.01.002

    [16]

    费光春, 温春齐, 王成松, 等.西藏墨竹工卡县洞中拉铅锌矿床花岗斑岩锆石SHRIMP U-Pb定年[J].中国地质, 2010, 37(2):470-476. doi: 10.3969/j.issn.1000-3657.2010.02.021

    [17]

    邹光富, 林仕良, 李再会, 等.滇西潞西邦木二长花岗岩SHRIMP锆石U-Pb年龄及其构造意义[J].中国地质, 2011, 38(1):77-85. doi: 10.3969/j.issn.1000-3657.2011.01.008

    [18]

    董云鹏, 朱炳泉, 常向阳, 等.哀牢山缝合带中两类火山岩地球化学特征及其构造意义[J].地球化学, 2000, 29(1):6-13. http://d.old.wanfangdata.com.cn/Periodical/dqhx200001002

    [19]

    Jackson S E, Pearson N J, Criffin W L, et al. The application of laser ablation of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2):47-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17d96cdc3a96b2aa4c52b4ebb0b5da26

    [20]

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    [21]

    Ludwig K R. Squid 1. 02: A user manual[M]. Berkeley: Berkeley Geochronological Cener Special publication, 2001: 1-219.

    [22]

    Li X H, Qi C S, Liu Y, et al. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block:New constraints from Hf isotopes and Fe/Mn rations[J]. Chinese Science Bull, 2005, 50:2481-2486. doi: 10.1360/982005-287

    [23]

    刘颖, 刘海臣, 李献华.用ICP-MS准确测量岩石样品中的40余种微量元素.地球化学, 1996, 25(26):552-558.

    [24]

    黎彤, 饶紀龙.论化学元素在地壳及其基本构造单元中的丰度[J].地质学报, 1965, 45(01):82-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196501006.htm

    [25]

    Batchelor R A, Bowden P. Petrorgenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemistry Geology, 1985, 50:63-81.

    [26]

    Pearce J A, Harris N B L, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    [27]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [28]

    刘翠, 邓晋福, 刘俊来, 等.哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境[J].岩石学报, 2011, 27(12):3599-3602. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112007

    [29]

    刘汇川, 王岳军, 蔡永丰, 等.哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究[J].大地构造与成矿学, 2013, 37(1):87-98. doi: 10.3969/j.issn.1001-1552.2013.01.010

    [30]

    Jian P, Liu D Y, Kroner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(Ⅱ):Geochemistry of ophiolites, arc/back-arc assemblages and withinplate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4):767-784.

    [31]

    Li G Z, Li C S, Ripley M E, et al. Geochronology, petrology and geochemistry of the Nanlinshan and Banpo mafic-ultramafic intrusions:Implications for subduction initiation in the eastern Paleo-Tethys[J]. Contributions to Mineralogy and Petrology, 2012, 164(5):773. doi: 10.1007/s00410-012-0770-4

    [32]

    Zi J W, Cawood P A, Fan W M, et al. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen(SW China) in response to closure of the PaleoTethys[J]. Lithos, 2012, 140(5):166-182.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  385
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2017-09-09
修回日期:  2017-11-15
刊出日期:  2019-03-15

目录