REE resources potential in Greenland and the availability evaluation in favor of China
-
摘要:
格陵兰地处北极,是全球最大的岛屿,经历了约40亿年的地质构造演化,矿产资源极丰富,尤其是以重稀土元素为特色的稀土矿资源。前人主要集中研究格陵兰岛黑色和多金属矿产资源,较少涉及稀土资源。通过研究,为保护中国有限的稀土资源,给中方企业和地勘单位实施"走出去"政策在格陵兰寻找潜在稀土资源提供基础资料。收集资料发现,格陵兰岛的稀土矿床主要集中在西南部、南部、中东部、中西部,其类型有碳酸岩型、碱性岩型、古砂矿型,可能有IOCG型。格陵兰岛稀土矿资源潜力巨大,通过分析格陵兰岛地质资料确定了4个远景区,由2个Ⅰ级、1个Ⅱ级和1个Ⅲ级组成。下一步重点关注格陵兰岛南部和西南部的2个Ⅰ级远景区,其次关注中东部和中西部Ⅱ级和Ⅲ级远景区。从多方面考虑,格陵兰岛稀土矿资源可利用性评价良好,格陵兰岛的稀土元素矿床值得中国企业关注。
Abstract:Located in the North Pole, Greenland is the world's largest island. After about four billion years of geological evolution, Greenland has been extremely rich in mineral resources, especially with heavy rare earth elements as the characteristics of the rare earth mineral resources. The previous researchers mainly concentrated their attention on ferrous metal and polymetallic mineral resource, with very insufficient attention paid to the rare earth metal resource. In order to protect the limited rare earth resources and provide basic information for Chinese enterprises' and geological exploration organizations' implementation of "going out" policy in Greenland with the purpose of seeking for potential REE resources, the authors, through the collection of literature and online information, found that the rare earth mineral deposits are mainly concentrated in southwest, south, east, and west of Greenland, and the types of these resources include mainly a carbonate rocks type, a alkaline rocks type, a paleo-placer type, and a possible IOCG type. The REE potential of Greenland is great. The four potential regions were determined by analysis of geological data from Greenland, which include two classⅠprospect, one class Ⅱ prospect and and one class Ⅲ prospect. The next step should focus on the potential area of southern and southwest Greenland two classⅠprospects, followed by the work in the middle east class Ⅱ prospect and the middle west class Ⅲ prospect. From various aspects of Greenland's rare earth mineral resources utilization, the authors consider that the REE deposits in Greenland deserve Chinese enterprises' much attention.
-
Key words:
- Greenland /
- resources potential /
- REE deposit /
- availability
-
-
表 1 格陵兰岛稀土矿概况
Table 1. The summary of REE deposits in Greenland
远景区地理位置(编号) 格陵兰西南(A-1) 格陵兰南部(A-2) 格陵兰西部(B-1) 格陵兰东部(C-1) 已知典型矿床 典型矿床:萨法托克(Sarfartoq)、卡斯苏克(Qaqarssuk)分别产于太古宙与古太古宙造山带过渡边界、太古代基底, 前者在花岗闪长片麻岩及外围环状碳酸岩岩墙赋矿, TREO的工业品位为0.8%, 推断资源量为14Mt, TREO平均品位为1.53%。后者以轻稀土为主, 面积1.5km2, TREO平均含量为2.4%, 矿脉小于1m厚[21] 典型矿床:可凡湾、克林雷恩、莫兹菲特稀土矿, 均产于凯迪利迪安褶皱带, 成矿时代均为新元古代; 可凡湾总资源量为619Mt, 其中探明资源量为437Mt, TREO 6.6Mt, Zn1.4 Mt, U3O8 15.87Mt。克林雷恩探明资源量为1000Mt, 平均品位分别为:ZrO2为2%, Nb2O5为0.25%, REO为0.5%, Y2O5为0.1%, Ta2O5为0.025%, 轻、重稀土比例为88:12[25-27] 典型矿床:卡拉特(karrat)稀土矿; 产于古元古代造山带中, 成矿时代为古元古代, 典型矿物:独居石+氟碳铈矿+褐帘, 矿体约为10~33m, TREO平均品位为1.36%, 预测资源量为26Mt[16] 典型矿床:米尔恩地稀土矿(Milne Land), 产于加里东褶皱带, 典型矿物为:石榴子石+独居石+锐钛矿+磷钇矿等。总资源量3.7Mt, 1.1% ZrO2, 5% Ce2O3, 2.6% Y2O5[18] 其余远景区 Qassiasuk(A3.l)、Ivigtut(A17)(图 1-C) Niaqomnakavsak Gronnedal-lka(图 3) 需要进一步查明成矿模式 重点考察01远景区(图 1-C) 划分远景区级别依据 紧邻海岸、离国际机场近、矿床资源潜力大、成矿条件良好 交通运输方便(海运+空运)、矿床||资源潜力巨大、成矿条件优越、伴有铀矿 可露天开采,紧邻海岸、富重稀土元素 具有重稀土元素、紧|邻海岸、开采方便 远景区级别 Ⅰ级 Ⅰ级 Ⅱ级 Ⅲ级 表 2 伊犁马萨克稀土矿与中国四川牦牛坪稀土矿对比
Table 2. Comparison of Ilimaussaq REE deposit and Maoniuping REE deposit, Sichuan Province, China
矿床 伊犁马萨克稀土矿 四川冕宁稀土矿(牦牛坪) 地理位置 格陵兰西南加达尔省那萨克镇(Narsaq) 四川南部冕宁西南22km 大地构造背景 加达尔省断裂 扬子陆台西缘陆缘坳陷带,康滇隆起与盐源-丽江台褶皱带的过渡部位 矿体展布 可凡湾和第二矿区的异霞正长岩在伊犁马萨克杂岩体|中以连续层状产出 矿体主要呈一系列北北东向平行大脉 含矿岩体 伊犁马萨克杂岩体中的异霞正长岩 碳酸岩+正长岩杂岩体 矿物组合 碱性长石、方钠石、霞石、方沸石、霓石、钠铁闪石、斯坦硅石;绿色异霞正长岩、富钠铁闪石、黑色异霞正长岩 氟碳铈矿+少量(硅钛铈矿+氟碳钙铈矿);方解石+霓辉石等;硫化物:方铅矿+辉钼矿 矿石组构 中细粒结构、块状构造 块状、条带状、细脉状等 期次 伊犁马萨克杂岩体的侵入分为3个主要期次 可能有4期成矿作用 矿床成因 深部岩浆房从响质熔浆分馏成钠质火成岩 富REE和挥发组分岩浆演化体系,早期碱性岩浆上侵,晚期充填构造裂隙成矿 资料来源 [6][27][37] [38-40] -
[1] 袁波.成都综合利用所控股企业海外矿山收购获得突破[EB/OL] (2016-12-12)[2019-06-17] http://www.cgs.gov.cn/xwl/gjhz/201612/t20161212_419219.html. 2016.
[2] 李仲学, 周宝炉, 赵怡晴.未来世界稀土供需格局分析及对策[J].稀土, 2016, 37(3):153-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201603028
[3] 周宝炉, 李仲学, 赵怡晴.世界稀土市场动态及产业对策建议[J].中国稀土学报, 2016, 34(3):257-264. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201603001
[4] 程建忠, 车丽萍.中国稀土资源开采现状及发展趋势[J].稀土, 2010, (2):65-69, 85. doi: 10.3969/j.issn.1004-0277.2010.02.015
[5] 聂凤军, 张伟波, 曹毅, 等.北极圈及邻区重要矿产资源找矿勘查新进展[J].地质科技情报, 2013, 32(5):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201305002
[6] 赵元艺, 卢伟, 汪傲, 等.格陵兰伊犁马萨克铌-钽-铀-稀土矿床研究进展[J].地质科技情报, 2013, 32(5):9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201305003
[7] 刘益康.从2010加拿大国际矿业年会(PDAC)看全球矿产勘查动向[J].矿产勘查, 2010, 1(3):205-208. doi: 10.3969/j.issn.1674-7801.2010.03.003
[8] 水新芳, 赵元艺, 李九玲, 等.格陵兰岛中东部马尔姆杰格(Malmbjerg)斑岩型钼矿床研究进展[J].地质科技情报, 2013, 32(5):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201305008
[9] 聂凤军, 赵元艺, 李振清, 等.格陵兰岛南部纳鲁娜科金矿床地质特征及成因[J].矿物学报, 2013, (S2):1054-1055. http://d.old.wanfangdata.com.cn/Conference/8301196
[10] 柳建平.格陵兰伊苏亚BIF型铁矿地质地球化学特征研究[D].中国地质大学(北京)硕士学位论文, 2013: 1-85.
[11] 赵元艺, 聂凤军, 李振清, 等.格陵兰岛西南部Nassaq地区辉钼矿Re-Os年龄及意义[J].地质论评, 2015, 61(2):457-462. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502018
[12] 逯文辉.格陵兰北部与西部重要矿床成矿规律与成矿预测[D].中国地质大学(北京)硕士学位论文, 2013: 1-69.
[13] Nicholas Rose, 徐长宁.格陵兰岛有色金属勘探前景分析[J].世界有色金属, 2012, (5):69-70. http://www.cnki.com.cn/Article/CJFDTotal-COLO201205027.htm
[14] 李九玲, 卢伟, 赵元艺, 等.格陵兰重要金属矿简介及分布规律[J].地质科技情报, 2013, 32(5):18-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201305004
[15] Henriksen N, Higgins A K, Kalsbeek F, et al. Greenland from Archean to Quaternary descriptive text to the 1995 geological map of Greenland, 1: 25000002nd edition[M]. Geological Survey of Denmark and Greenland Bulletin, 2009: 1-126.
[16] Secher K. Thorning L, Bo M N, Schjøth F, et al. On-line presentation of mineral occurrences in Greenland[J]. Journal of Lightwave Technology, 2005, 29(1):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000001006906
[17] Paulick H, Rosa D, Kalvig P. The rare earth element potential in Greenland. Geology and Ore-exploration and mining in Greenland[M]. Denmark Geocenter, 2015: 1-51.
[18] Mott A V, Bird D K, Grove M, et al. Karrat Isfjord:A newly discovered Paleoproterozoic carbonatite-sourced REE deposit, Central West Greenland[J]. Economic Geology, 2013, 108(6):1471-1488. doi: 10.2113/econgeo.108.6.1471
[19] Kolb J, Keiding J K, Steenfelt A, et al. Metallogeny of Greenland[J]. Ore Geology Reviews, 2016, 78:493-555. doi: 10.1016/j.oregeorev.2016.03.006
[20] Bohse H, Brooks C K, Kunzendorf H, et al. Field observations on the kakortokites of the ilimaussaq intrusion, south greenland, including mapping and analyses by portable x-ray fluorescence equipment for zirconium and niobium[M]. Denmark:Geological Survey of Greenland, 1971:38-43.
[21] Harpøth O, Pedersen J L, Schønwandt H K, et al. The mineral occurrences of central East Greenland[M]. Commission for Scientific Investigation in Greenland, 1986, 17: 1-139.
[22] Leth Nielsen B. Radiometric survey between Scores by Sund and Hold with Hope, central East Greenland[M]. Geological Survey of Greenland, 1976: 1-44.
[23] Hudson Resources Inc. Sarfartoq rare earth project[EB/OL](2015-5-10)[2019-06-17] http://www.hudsonresources.ca/files/Hudson_43-101_30May12.pdf.2015.
[24] Nunaminerals A S. Tikisuaaq REE prospect[EB/OL](2015-05-12)[2019-06-17] http://nunaminerals.com/en/projects/rare-earthelement-ree-projects/tikiusaaq-ree-prospect.html.
[25] Upton B G J, Emeleus C H, Heaman L M, et al. Magmatism of the mid-Proterozoic Gardar Province, South Greenland:Chronology, petrogenesis and geological setting[J]. Lithos, 2003, 68(1):43-65. https://www.researchgate.net/publication/223588636_Magmatism_of_the_mid-Proterozoic_Gardar_Province_South_Greenland_Chronology_petrogenesis_and_geological_setting
[26] Greenland Minerals and Energy Ltd. Developing KvanefjeldGreenland's world project[EB/OL](2015-02)[2019-06-17] http://www.ggg.gl/rare-earth-elements/rare-earth-elements-atkvanefjeld/.2015.
[27] Henning Sørensen, Anker Weidick, Henry Emeleus, et al. Geological Guide South Greenland: The Narsarsuaq-NarsaqQaqortoq Region[M]. Geological Survey of Denmark and Greenland, 2006: 1-75.
[28] Regency Mines. Motzfeldt project[EB/OL] (2010-12)[2019-06-17] https://www.govmin.gl/images/stories/minerals/events/perth_dec_2010/Ram_Resources.pdf.2010.
[29] Upton B G J. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland[M]. Geological Survey of Denmark & Greenland Bulletin, 2013: 1-124.
[30] 牛贺才, 林传山.论四川冕宁稀土矿床的成因[J].矿床地质, 1994, 13(4):345-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400286675
[31] Secher K, Heaman L M, Nielsen T F D, et al. Timing of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province located 64°-67° N in southern West Greenland[J]. Lithos, 2009, (S1), 112:400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deffb9f0fe1f7f4fb6eb85a39becc7c3
[32] 王希斌, 郝梓国, 李震, 等.白云鄂博——一个典型的碱性-碳酸岩杂岩的厘定[J].地质学报, 2002, 76(4):501-524. doi: 10.3321/j.issn:0001-5717.2002.04.009
[33] 贾春阳.格陵兰岛:稀土宝藏还是地缘陷阱[J].世界知识, 2014, (13):50-51. http://www.cnki.com.cn/Article/CJFDTotal-SJZS201413019.htm
[34] 刘益康.北冰洋圈的矿产勘查热[J].世界有色金属, 2010, (12):32-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201012003
[35] 卢伟, 赵元艺, 逯文辉, 等.格陵兰优势金属矿产与矿业投资环境分析[J].地质科技情报, 2013, 32(5):52-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201305009
[36] 宋国明.格陵兰矿业合作前景广阔[J].国土资源情报, 2013, (1):24-29. doi: 10.3969/j.issn.1674-3709.2013.01.005
[37] Soerensen H, Bailey J C, Rosehansen J. The emplacement and crystallization of the U-Th-REE-rich agpaitic and hyperagpaitic lujavrites at Kvanefjeld, Ilimaussaq alkaline complex, South Greenland[J]. Bulletin of the Geological Society of Denmark, 2011, 59:69-92.
[38] 谢玉玲, 侯增谦, 徐九华, 等.四川冕宁-昌都稀土成矿带铜锌、铜锡合金的发现及成因意义[J].中国科学(D辑), 2005, 35(6):572-577. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200506009.htm
[39] 刘丛强, 黄智龙, 许成, 等.地幔流体及成矿作用——以四川冕宁稀土矿床为例[M].北京:地质出版社, 2004.
[40] 阳正熙, Anthony, 蒲广平.四川牦牛坪稀土矿物流体包裹体研究[J].矿物岩石, 2001, 21(2):26-33. doi: 10.3969/j.issn.1001-6872.2001.02.006
-