The tectonic evolution of the Garze-Litang ophiolite mélange zone in the Late Triassic: Constraints from geochronology and geochemistry of the Yongjie batholith in the Garze-Litang area
-
摘要:
甘孜-理塘蛇绿混杂岩带是西南三江构造带的重要组成部分,经历了古特提斯构造体系的演化,形成完整的沟-弧-盆体系。义敦岛弧属甘孜-理塘弧盆系范畴,位于甘孜-理塘缝合带西侧。对义敦岛弧勇杰岩体开展详细的岩石学、地球化学、年代学研究,为甘孜-理塘洋盆晚三叠世构造演化研究提供新的证据。义敦勇杰岩体黑云母二长花岗岩和花岗质细晶岩的锆石UPb年龄分别为214.2±1.4Ma和206.2±1.8Ma,整体属高钾钙碱性弱过铝质花岗岩;稀土元素配分曲线具轻稀土元素相对富集、重稀土元素相对平坦的特征,负Eu异常明显;微量元素表现为大离子亲石元素Rb、Ba、Th、U、K相对富集,高场强元素Nb、Ta、P、Ti亏损的特征,显示勇杰岩体黑云母二长花岗岩明显具俯冲型花岗岩的特征,而花岗质细晶岩具有碰撞型花岗岩的特征。总体反映晚三叠世甘孜-理塘洋盆从俯冲至碰撞的地球动力学背景,应属理塘蛇绿混杂岩带碰撞造山过程的产物。
Abstract:The Garze-Litang ophiolite mélange zone is an important part of the 'Three-River' orogenic belt in Southwest China, which experienced the evolution of paleo-Tethys and formed a complete trench-arc-basin system. The Yidun arc belongs to "the Garze-Litang arc basin system", located on the west side of the Garze-Litang suture zone. Petrological, geochemical and geochronological studies of the Yongjie batholith in the Yidun arc have provided new evidence for tectonic evolution of the GarzeLitang Ocean basin in the Late Triassic. The zircon U-Pb ages of the biotite adamellite and the granitic aplite are 214.2±1.4Ma and 206.2±1.8Ma, suggesting high-K calc-alkaline metaluminous to peraluminous rocks, with REE patterns displaying enriched LREE, flat HREE and obvious negative Eu anomaly, and trace elements showing relative enrichment of large iron lithophile elements Rb, Ba, Th, U and K and depletion of high field strength elements Nb, Ta, P and Ti. Geochemical characteristics show that the biotite adamellite of the Yongjie batholith has the obvious features of subducting granite, and the granitic aplite has the characteristics of collision granite. All these features suggest that the Garze-Litang Ocean basin had the geodynamic setting from subduction to collision in the late Triassic, and it should be the product of the collisional orogeny in the Garze-Litang ophiolite melange belt.
-
Key words:
- Garze-Litang arc basin system /
- Yidun arc /
- Yongjie batholith /
- geochronology /
- geochemistry /
- geological significance
-
-
图 1 川西地区大地构造位置(据参考文献[7]修改)
Figure 1.
图 6 勇杰岩体A/CNK-A/NK图解(底图据参考文献[20])
Figure 6.
图 8 勇杰岩体构造环境(Y+Nb)-Rb(a)和(Yb+Ta)-Rb(b)判别图解[34]
Figure 8.
表 1 勇杰岩体LA-ICP-MS锆石U-Th-Pb同位素测试结果
Table 1. LA-ICP-MS zircon U-Th-Pb isotope data of the Yongjie batholith
分析点 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 勇杰岩体黑云母二长花岗岩(PM007-7DN1) PM007-7DN1-1 69 164 421 0.39 0.0690 0.0018 1.3675 0.0455 0.1428 0.0030 898 54 875 20 861 17 PM007-7DN1-3 19 229 479 0.48 0.0526 0.0023 0.2371 0.0102 0.0330 0.0005 309 98 216 8 210 3 PM007-7DN1-4 19 224 474 0.47 0.0517 0.0018 0.2358 0.0085 0.0333 0.0005 272 80 215 7 211 3 PM007-7DN1-5 18 191 463 0.41 0.0502 0.0021 0.2324 0.0098 0.0337 0.0005 206 96 212 8 213 3 PM007-7DN1-6 39 157 697 0.23 0.0555 0.0018 0.3932 0.0154 0.0515 0.0014 432 68 337 11 324 9 PM007-7DN1-7 181 2057 4567 0.45 0.0500 0.0009 0.2342 0.0045 0.0338 0.0003 195 43 214 4 215 2 PM007-7DN1-8 22 260 567 0.46 0.0520 0.0021 0.2333 0.0092 0.0328 0.0005 287 99 213 8 208 3 PM007-7DN1-9 15 165 399 0.41 0.0500 0.0023 0.2311 0.0111 0.0333 0.0005 195 106 211 9 211 3 PM007-7DN1-11 18 189 468 0.40 0.0495 0.0020 0.2313 0.0099 0.0337 0.0005 172 94 211 8 214 3 PM007-7DN1-12 106 68 1253 0.05 0.0570 0.0013 0.6438 0.0160 0.0816 0.0011 500 52 505 10 505 6 PM007-7DN1-13 27 337 671 0.50 0.0558 0.0026 0.2614 0.0126 0.0337 0.0006 456 102 236 10 214 4 PM007-7DN1-14 18 226 457 0.49 0.0506 0.0021 0.2395 0.0101 0.0342 0.0005 233 96 218 8 217 3 PM007-7DN1-15 7 76 184 0.41 0.0583 0.0043 0.2584 0.0179 0.0339 0.0007 539 163 233 14 215 4 PM007-7DN1-16 49 290 303 0.96 0.0657 0.0019 1.1250 0.0322 0.1241 0.0014 798 56 765 15 754 8 PM007-7DN1-17 25 214 660 0.32 0.0521 0.0021 0.2455 0.0098 0.0345 0.0007 300 97 223 8 219 4 PM007-7DN1-18 13 119 345 0.35 0.0553 0.0055 0.2515 0.0232 0.0337 0.0009 433 224 228 19 214 6 PM007-7DN1-19 25 249 607 0.41 0.0515 0.0052 0.2466 0.0240 0.0349 0.0008 261 235 224 20 221 5 PM007-7DN1-20 10 150 240 0.63 0.0511 0.0033 0.2373 0.0149 0.0343 0.0006 256 144 216 12 217 4 PM007-7DN1-21 32 463 801 0.58 0.0517 0.0020 0.2413 0.0097 0.0337 0.0004 276 92 220 8 214 3 PM007-7DN1-22 31 487 707 0.69 0.0540 0.0025 0.2612 0.0132 0.0348 0.0007 372 106 236 11 220 4 PM007-7DN1-23 195 67 1113 0.06 0.0759 0.0015 1.7074 0.0337 0.1624 0.0016 1100 38 1011 13 970 9 PM007-7DN1-24 6 76 155 0.49 0.0550 0.0034 0.2564 0.0167 0.0338 0.0006 413 106 232 13 214 4 PM007-7DN1-25 23 134 600 0.22 0.0560 0.0044 0.2601 0.0192 0.0337 0.0007 454 144 235 15 214 5 PM007-7DN1-26 9 91 235 0.39 0.0546 0.0064 0.2506 0.0286 0.0338 0.0013 398 265 227 23 214 8 PM007-7DN1-27 23 258 563 0.46 0.0540 0.0022 0.2546 0.0101 0.0345 0.0005 369 93 230 8 219 3 PM007-7DN1-28 26 212 653 0.32 0.0502 0.0021 0.2390 0.0105 0.0343 0.0005 211 98 218 9 218 3 勇杰岩体细晶岩脉(PM007-2DN1) PM007-2DN1-3 36 402 938 0.43 0.0523 0.0007 0.2370 0.0049 0.0328 0.0005 298 -3 216 4 208 3 PM007-2DN1-4 14 156 354 0.44 0.0506 0.0010 0.2313 0.0061 0.0331 0.0005 220 81 211 5 210 3 PM007-2DN1-5 13 179 349 0.51 0.0499 0.0010 0.2233 0.0050 0.0325 0.0005 191 44 205 4 206 3 PM007-2DN1-7 14 143 366 0.39 0.0512 0.0008 0.2321 0.0050 0.0328 0.0005 250 37 212 4 208 3 PM007-2DN1-8 11 137 283 0.48 0.0519 0.0010 0.2322 0.0051 0.0325 0.0005 283 46 212 4 206 3 PM007-2DN1-9 32 364 867 0.42 0.0516 0.0012 0.2324 0.0092 0.0325 0.0009 333 54 212 8 206 6 PM007-2DN1-11 13 167 332 0.50 0.0502 0.0009 0.2297 0.0053 0.0331 0.0005 211 44 210 4 210 3 PM007-2DN1-13 50 455 1381 0.33 0.0523 0.0006 0.2315 0.0046 0.0320 0.0005 298 26 211 4 203 3 PM007-2DN1-14 9 115 253 0.45 0.0504 0.0011 0.2238 0.0051 0.0322 0.0006 213 48 205 4 204 4 PM007-2DN1-15 14 153 370 0.41 0.0505 0.0009 0.2238 0.0045 0.0321 0.0005 220 41 205 4 204 3 PM007-2DN1-16 27 297 701 0.42 0.0533 0.0010 0.2380 0.0069 0.0322 0.0006 343 43 217 6 204 4 PM007-2DN1-17 11 140 287 0.49 0.0503 0.0011 0.2264 0.0055 0.0326 0.0006 209 45 207 5 207 4 PM007-2DN1-18 13 174 340 0.51 0.0518 0.0009 0.2318 0.0060 0.0323 0.0007 276 42 212 5 205 4 PM007-2DN1-19 41 559 1071 0.52 0.0552 0.0009 0.2424 0.0059 0.0317 0.0006 420 34 220 5 201 4 PM007-2DN1-20 35 613 827 0.74 0.0538 0.0011 0.2430 0.0056 0.0327 0.0007 361 44 221 5 208 5 PM007-2DN1-22 31 274 608 0.45 0.0552 0.0015 0.3339 0.0106 0.0438 0.0009 420 58 293 8 276 6 表 2 勇杰岩体主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth elements content of the Yongjie batholith
样品编号 PM007-4FX2 PM007-7FX1 PM007-19FX1 PM007-19FX2 PM007-26FX1 PM007-27FX1 PM007-2FX1 PM007-4FX3 PM007-4FX4 名称 黑云二长花岗岩 黑云二长花岗岩 黑云二长花岗岩 黑云二长花岗岩 黑云二长花岗岩 黑云二长花岗岩 细晶岩脉 细晶岩脉 细晶岩脉 SiO2 69.68 69.70 71.10 70.54 70.72 71.72 77.68 78.16 76.72 Na2O 2.68 2.34 2.53 2.39 2.59 2.35 2.97 3.51 3.74 CaO 3.79 3.53 2.91 2.91 2.92 2.56 0.63 0.54 0.64 FeO 3.30 2.87 2.51 2.64 2.64 2.45 0.42 0.36 0.54 Fe2O3 0.75 0.87 0.60 0.53 0.37 0.55 0.21 0.27 0.29 Al2O3 14.66 14.21 13.81 14.46 14.34 13.55 12.60 12.11 13.43 MgO 1.51 1.24 1.07 1.11 0.97 1.10 0.094 0.075 0.078 K2O 2.83 3.23 3.68 3.52 3.61 3.78 5.38 3.76 4.70 P2O5 0.10 0.10 0.094 0.10 0.089 0.055 0.010 0.017 0.028 MnO2 0.10 0.086 0.10 0.10 0.10 0.070 0.021 0.033 0.091 TiO2 0.66 0.55 0.45 0.48 0.43 0.45 0.054 0.039 0.038 烧失量 0.49 0.79 0.96 0.59 0.67 0.83 0.40 0.56 0.39 总计 100.07 98.72 98.85 98.78 98.78 98.63 100.06 98.87 100.29 A/CNK 1.02 1.03 1.02 1.11 1.06 1.07 1.06 1.11 1.08 A/NK 1.96 1.93 1.69 1.86 1.75 1.70 1.17 1.22 1.19 Mg# 40.41 37.59 38.56 38.89 36.8 39.97 21.49 18.12 14.85 La 45.2 31.7 30.1 32.4 35.2 38.0 17.4 10.5 11.3 Ce 76.0 60.9 53.0 65.5 64.8 65.3 31.2 18.5 21.9 Pr 8.28 6.72 5.50 5.74 7.04 6.89 3.25 2.29 2.80 Nd 31.6 31.2 23.9 25.6 27.7 30.0 13.4 10.3 12.9 Sm 5.62 5.61 4.76 4.18 5.02 4.98 1.94 1.91 3.05 Eu 1.16 1.29 1.12 1.10 1.16 0.92 0.18 0.11 0.10 Gd 5.21 5.47 4.41 4.54 4.96 4.61 1.89 1.75 2.44 Tb 0.89 0.91 0.74 0.79 0.86 0.69 0.28 0.31 0.46 Dy 5.79 6.43 4.70 4.60 5.61 3.44 1.40 1.83 2.92 Ho 1.22 1.11 0.87 0.90 1.04 0.73 0.28 0.38 0.53 Er 3.74 3.39 2.45 2.67 3.16 1.88 0.92 1.15 1.83 Tm 0.62 0.57 0.37 0.37 0.50 0.32 0.16 0.21 0.33 Yb 3.69 3.01 2.31 2.50 3.28 1.81 1.19 1.47 2.12 Lu 0.57 0.51 0.34 0.34 0.51 0.27 0.23 0.24 0.36 Y 37.7 36.5 25.8 27.4 32.8 20.9 8.88 12.5 17.7 Li 92.6 38.4 53.4 61.9 45.0 38.3 8.82 35.8 33.5 Sc 12.3 11.7 9.83 10.9 10.5 9.79 1.74 3.61 4.48 V 68.4 55.7 47.9 50.9 45.7 42.4 3.32 2.80 2.90 Cr 17.5 19.8 14.7 15.4 10.2 18.5 5.09 5.18 5.10 Co 7.79 7.27 5.79 6.41 5.83 5.39 1.11 1.01 1.01 Ni 6.51 5.14 6.12 4.74 3.10 4.28 1.02 1.03 1.03 Cu 1.86 4.80 2.72 2.35 3.60 4.39 2.23 1.45 2.84 Zn 64.0 55.2 42.4 46.0 48.7 43.2 9.47 9.29 20.4 Ga 16.1 16.3 15.6 17.4 16.6 15.3 10.3 12.8 14.9 Rb 115 137 157 161 157 151 200 235 304 Sr 218 182 173 173 193 155 30.3 21.3 16.2 Zr 44.8 63.0 78.7 73.7 98.3 142 128 63.1 86.2 Nb 9.15 11.8 10.7 11.4 12.4 16.0 5.78 8.44 10.9 Ba 839 732 644 640 640 802 78.2 38.1 37.1 Hf 1.77 2.70 3.23 3.01 4.18 4.43 5.44 3.24 5.69 Ta 0.62 0.71 0.89 0.80 1.61 1.00 0.36 1.18 1.90 Pb 17.74 27.42 35.10 33.79 31.09 30.00 57.37 60.51 57.34 Th 12.1 12.8 19.5 16.6 14.4 18.6 24.2 11.0 15.9 U 2.45 1.88 4.03 2.46 3.67 1.79 3.58 1.98 3.04 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] 严松涛.四川理塘地区图姆沟组火山岩地球化学特征、年代学及地质意义研究[D].中国地质大学(北京)硕士学位论文, 2016.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068701.htm [2] 潘桂棠, 肖庆辉, 陆松年, 等.中国大地构造单元划分[J].中国地质, 2009, 36(1):1-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001
[3] 侯增谦, 曲晓明, 周继荣, 等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报, 2001, 75(4):484-497. doi: 10.3321/j.issn:0001-5717.2001.04.008
[4] 李艳军, 魏俊浩, 陈华勇, 等.义敦岛弧带夏塞早白垩世A型花岗岩成因:锆石U-Pb年代学、地球化学及Hf同位素制约[J].大地构造与成矿学, 2014, 38(4):939-953. doi: 10.3969/j.issn.1001-1552.2014.04.018
[5] 侯增谦, 侯立纬, 叶庆同, 等.三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床[M].北京:地震出版社, 1995:1-120.
[6] Reid A, Wilson C J L, Shun L, et al. Mesozoic plutons of the Yidun Arc, SW China:U-Pb geochronology and Hf isotopic signature[J]. Ore Geology Reviews, 2007, 31(1):88-106. http://cn.bing.com/academic/profile?id=6c4fcd5ed76f0b4eeac30e4aca2cc2b7&encoded=0&v=paper_preview&mkt=zh-cn
[7] Hou Z Q, Zaw K, Pan G T, et al. Sanjiang Tethyan metallogenesis in S. W. China:tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31(1):48-87. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.oregeorev.2004.12.007/
[8] 王鹏, 董国臣, 董美玲, 等.义敦岛弧措交玛岩体岩浆混合成因:镁铁质微粒包体的证据[J].岩石学报, 2017, 33(8):2535-2547. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708014
[9] 刘学龙, 李文昌, 张娜.西南三江义敦岛弧南端地壳抬升历史及资源评价意义[J].地质学报, 2015, 89(2):289-304. doi: 10.3969/j.issn.1006-0995.2015.02.032
[10] 刘树文, 王宗起, 闫全人, 等.川西雀儿山花岗岩的地球化学和岩石成因[J].地质学报, 2006, 80(9):1355-1363. doi: 10.3321/j.issn:0001-5717.2006.09.011
[11] 刘树文, 王宗起, 闫全人, 等.折多山花岗岩时代、成因及其动力学意义[J].岩石学报, 2006, 22(2):343-352. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200602008
[12] Wang C M, Bagas L, Lu Y, et al. Terrane boundary and spatiotemporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J]. EarthScience Reviews, 2016, 156:39-65. http://cn.bing.com/academic/profile?id=63dc511acf01bdd93ca2f26d7c54528e&encoded=0&v=paper_preview&mkt=zh-cn
[13] 侯增谦, 杨岳清, 曲晓明, 等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报, 2004, 78(1):109-120. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200401013
[14] 马比阿伟, 木合塔尔·扎日, 文登奎, 等.三江造山带义敦岛弧中段格聂(南)花岗岩体地球化学特征及地质意义[J].地质学报, 2015, 89(2):305-318. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502008
[15] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
[16] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[17] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
[18] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 74:193-227. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn
[19] Martin H, Smiithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(12):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn
[20] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[21] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
https://www.researchgate.net/publication/231575101_Chemical_and_isotopic_systematics_of_oceanic_basalts_Implications_for_mantle_composition_and_processes [22] Dong Y, Zhang G, Neubauer F, et al. Syn-and post-collisional granitoids in the Central Tianshan orogen:Geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research, 2011, 20(23):568-581. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.gr.2011.01.013/
[23] 肖庆辉, 邓晋福, 马大铨.花岗岩研究思维与方法[M].北京:地质出版社, 2002:31.
[24] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[C]//The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Pub., 1985.
[25] 尹志刚, 宫兆民, 张跃龙, 等.大兴安岭伊勒呼里山早白垩世碱长花岗岩年龄、地球化学特征及其地质意义[J].地质通报, 2018, 37(6):1061-1074. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180610&flag=1
[26] 张永明, 裴先治, 李佐臣, 等.青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J].地质通报, 2019, 38(5):742-756. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190505&flag=1
[27] Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. Treatise on Geochemistry(Volume 3). Oxford: Elsevier-Pergamon, 2003: 1-64.
[28] 刘宝田, 江耀明, 曲景川.四川理塘-甘孜一带古洋壳的发现及其对板块构造的意义[C]//青藏高原地质文集.北京: 地质出版社, 1982, 4: 119-128.
[29] 侯增谦, 莫宣学.义敦岛弧的形成演化及其对"三江"地区块状硫化物矿床的控制作用[J].地球科学, 1991, (2):153-948. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199102005.htm
[30] 侯立玮, 戴丙春, 俞如龙, 等.四川西部义敦岛弧碰撞造山带与主要成矿系列[M].北京:地质出版社, 1994.
[31] 骆耀南.扬子地台西南缘陆内造山带地质与矿产论文集[M].成都:四川科技技术出版社, 1998.
[32] 王楠, 吴才来, 秦海鹏, 等.川西义敦岛弧稻城花岗岩体和海子山花岗岩体锆石U-Pb年代学、Hf同位素特征及地质意义[J].地质学报, 2016, 90(11):3227-3245. doi: 10.3969/j.issn.0001-5717.2016.11.016
[33] 王楠, 吴才来, 秦海鹏.川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨[J].地质论评, 2017, 63(4):981-1000. http://d.old.wanfangdata.com.cn/Periodical/dzlp201704011
[34] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
[35] 莫宣学, 路凤香, 沈上越.三江特提斯火山作用与成矿[M].北京:地质出版社, 1993:105-157.
-