北祁连造山带东端早古生代岩浆作用过程——来自甘肃天水长沟河闪长质片麻岩锆石年龄、微量元素及Hf同位素的证据

张佳瑶, 何艳红, 陈亮, 徐可心. 北祁连造山带东端早古生代岩浆作用过程——来自甘肃天水长沟河闪长质片麻岩锆石年龄、微量元素及Hf同位素的证据[J]. 地质通报, 2019, 38(10): 1626-1636.
引用本文: 张佳瑶, 何艳红, 陈亮, 徐可心. 北祁连造山带东端早古生代岩浆作用过程——来自甘肃天水长沟河闪长质片麻岩锆石年龄、微量元素及Hf同位素的证据[J]. 地质通报, 2019, 38(10): 1626-1636.
ZHANG Jiayao, HE Yanhong, CHEN Liang, XU Kexin. Paleozoic magma evolution at the eastern end of Northern Qilian orogenic belt: Evidence from the zircon U-Pb ages, trace elements and Hf isotopic composition of Changgouhe dioritic gneiss[J]. Geological Bulletin of China, 2019, 38(10): 1626-1636.
Citation: ZHANG Jiayao, HE Yanhong, CHEN Liang, XU Kexin. Paleozoic magma evolution at the eastern end of Northern Qilian orogenic belt: Evidence from the zircon U-Pb ages, trace elements and Hf isotopic composition of Changgouhe dioritic gneiss[J]. Geological Bulletin of China, 2019, 38(10): 1626-1636.

北祁连造山带东端早古生代岩浆作用过程——来自甘肃天水长沟河闪长质片麻岩锆石年龄、微量元素及Hf同位素的证据

  • 基金项目:
    国家自然科学基金项目《早古生代胶-辽-吉带岩浆作用:地球化学和年代学研究》(批准号:41421002)和国家自然科学创新群体项目《大陆构造与动力学》(批准号:41102121)
详细信息
    作者简介: 张佳瑶(1994-), 女, 在读硕士生, 矿物学、岩石学、矿床学专业。E-mail:zhangjiayaoxian@163.com
    通讯作者: 何艳红(1979-), 女, 副教授, 硕士生导师, 从事前寒武纪地质研究。E-mail:he-hk@163.com
  • 中图分类号: P597+.3;P534.4

Paleozoic magma evolution at the eastern end of Northern Qilian orogenic belt: Evidence from the zircon U-Pb ages, trace elements and Hf isotopic composition of Changgouhe dioritic gneiss

More Information
  • 甘肃天水地区长沟河闪长岩位于北祁连造山带东端,发育片麻状构造面理,长期以来被认为是形成于前寒武纪的侵入岩体。用LA-ICP-MS技术测得2组岩浆锆石的206Pb/238U年龄为463.3±2.3Ma(MSWD=0.52,n=11)和443.8±2.6Ma(MSWD=0.44,n=9)。锆石微量元素分析表明,2组年龄具有一致的微量元素组成,说明二者晶出于同源封闭的岩浆体系。t-Eu/Eu*投图显示,约460Ma的岩浆锆石无Eu异常,与幔源岩浆锆石稀土元素特征一致。而约440Ma的岩浆锆石具有负Eu异常,指示母岩开始发生斜长石的结晶分离,与深熔作用过程一致。因此,约460Ma为长沟河闪长质片麻岩原岩的形成年龄,约440Ma为长沟河闪长质片麻岩深熔岩浆的结晶年龄。Hf同位素分析测试结果显示,约460Ma和约440Ma两组锆石的εHft)值分别为8.23~11.57和6.36~8.03,指示460Ma发育幔源新生地壳岩浆作用,而440Ma壳源再造活动增强。

  • 加载中
  • 图 1  秦岭-祁连造山带(a)和北祁连造山带东端地质简图(b)[26]

    Figure 1. 

    图 2  长沟河闪长质片麻岩野外(a)及镜下照片(b、c,单偏光和正交偏光)

    Figure 2. 

    图 3  长沟河闪长质片麻岩(16LS09-2)锆石阴极发光(CL)图像

    Figure 3. 

    图 4  长沟河闪长质片麻岩LA-ICP-MS锆石U-Pb谐和图

    Figure 4. 

    图 5  长沟河闪长质片麻岩锆石稀土元素配分图解

    Figure 5. 

    图 6  长沟河闪长质片麻岩年龄t-εHf(t)图解

    Figure 6. 

    图 7  长沟河闪长质片麻岩锆石微量元素相关图解

    Figure 7. 

    图 8  长沟河闪长质片麻岩锆石t-Eu/Eu*图解

    Figure 8. 

    表 1  长沟河闪长质片麻岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon U- Th-Pb isotope analyses of the Changgouhe dioritic gneiss

    点号 含量/10-6 Th/U 同位素比值 同位素年龄/Ma 谐和度/%
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 253 269 0.94 0.055 0.002 0.537 0.017 0.071 0.001 408 71 436 11 441.4 4.0 99
    2 557 481 1.16 0.058 0.002 0.591 0.014 0.074 0.001 529 54 472 9 459.6 3.5 103
    4 663 453 1.46 0.056 0.002 0.548 0.014 0.071 0.001 440 60 444 9 444.1 3.6 100
    5 636 396 1.61 0.057 0.001 0.581 0.012 0.074 0.001 478 51 465 8 462.4 3.3 101
    6 244 238 1.03 0.057 0.002 0.588 0.023 0.075 0.001 476 87 470 14 467.8 5.0 100
    7 214 204 1.05 0.056 0.002 0.573 0.017 0.075 0.001 442 70 460 11 463.3 4.1 99
    9 605 440 1.38 0.058 0.002 0.579 0.014 0.072 0.001 540 58 464 9 448.1 3.6 103
    10 927 560 1.66 0.056 0.001 0.580 0.014 0.075 0.001 465 56 464 9 464.0 3.5 100
    12 421 373 1.13 0.055 0.002 0.559 0.016 0.074 0.001 403 66 451 10 460.3 3.9 98
    13 560 403 1.39 0.058 0.002 0.598 0.016 0.076 0.001 508 61 476 10 469.0 3.8 101
    14 491 374 1.31 0.056 0.002 0.552 0.015 0.072 0.001 443 62 446 10 446.7 3.7 100
    15 363 343 1.06 0.056 0.002 0.578 0.014 0.075 0.001 457 56 463 9 464.2 3.6 100
    16 259 250 1.04 0.056 0.002 0.549 0.016 0.071 0.001 444 69 444 11 444.1 3.9 100
    18 126 141 0.89 0.060 0.003 0.584 0.023 0.071 0.001 598 87 467 15 440.7 4.8 106
    20 488 356 1.37 0.056 0.002 0.549 0.017 0.071 0.001 456 71 444 11 442.0 4.0 101
    21 109 110 0.99 0.056 0.002 0.545 0.021 0.071 0.001 441 88 442 14 441.9 4.7 100
    23 160 188 0.85 0.057 0.002 0.615 0.025 0.078 0.001 488 90 487 15 486.1 5.4 100
    24 504 376 1.34 0.056 0.001 0.574 0.014 0.074 0.001 454 56 461 9 461.6 3.6 100
    26 414 300 1.38 0.060 0.002 0.618 0.018 0.075 0.001 608 65 489 11 463.2 4.1 105
    28 168 182 0.92 0.056 0.002 0.544 0.022 0.071 0.001 440 90 441 14 441.3 4.8 100
    29 251 258 0.97 0.057 0.002 0.582 0.022 0.075 0.001 473 84 466 14 464.3 4.8 100
    下载: 导出CSV

    表 2  长沟河闪长质片麻岩锆石微量元素数据分析结果

    Table 2.  Analytical results of trace element data of zircons from Changgouhe dioritic gneiss

    点号 1 2 4 5 6 7 9 10 12 13 14 15 16 18 20 21 23 24 26 28 29
    Pb 26 51 49 46 26 23 45 66 39 45 40 36 24 12 37 11 20 41 33 17 25
    La 0.207 0.222 0.129 0.058 0.11 0.218 0.211 0.108 0.164 0.076 0.139 0.064 0.16 0.187 0.209 0.067
    Ce 6.97 14.33 20.31 19.19 7.38 9.44 17.63 22.01 10.29 15.85 16.2 7.79 8.29 6.16 14.92 5.04 5.95 17.36 12.61 6.21 6.53
    Pr 0.091 0.314 0.422 0.376 0.074 0.184 0.276 0.462 0.17 0.287 0.298 0.08 0.186 0.098 0.241 0.07 0.097 0.382 0.278 0.121 0.094
    Nd 1.17 3.11 5.09 4.76 1.12 2.22 4.31 4.69 2.04 3.64 3.59 0.99 1.51 1.22 2.19 0.73 1.09 4.65 3 1.45 0.84
    Sm 1.26 3.36 6.31 6.23 1.41 2.5 5.67 6.35 2.23 4.26 4.64 1.31 1.69 1.49 3.01 1.08 1.22 4.73 3.38 1.56 0.98
    Eu 1 2.12 3.56 3.56 0.96 1.56 3.25 3.76 1.41 2.83 2.85 0.99 1 0.845 2 0.638 0.84 2.75 1.96 0.9 0.8
    Gd 5.39 12.45 24.26 22.78 7.27 11.24 21.58 25.74 9.97 18.9 19.4 7.4 6.35 5.95 14.48 4.84 5.58 18.92 13.16 6 5.98
    Th 252.64 556.76 662.92 636.03 244.23 214.17 605.28 926.96 421.02 559.62 491.4 363.01 259.23 125.83 487.98 109.36 159.84 503.72 414.39 167.51 250.92
    Tb 2.04 4.25 8.23 7.68 2.38 3.74 7.25 8.5 3.65 6.2 6.88 2.69 2.12 1.95 5.3 1.59 1.87 6.3 4.47 2.01 2.17
    Dy 25.4 51.96 96.03 90.52 29.22 44.77 83.77 97.44 43.57 74.84 81.67 32.86 27.51 24.23 66.51 19.08 22.38 74.09 51.92 26.07 26.07
    Y 340.81 661.4 1254.05 1146.27 396.5 587.57 1067 1230 584.93 953.58 1068.56 433.54 367.1 320.22 914.16 256.9 318.19 968.57 647.71 344.3 352.1
    Ho 10.29 20.2 36.72 34.17 12.2 17.7 32.53 36.85 17.73 28.88 31.9 13.47 11.22 9.73 27.14 7.82 9.59 29.03 19.84 10.44 11.13
    Er 53.75 101.01 184.22 165.07 61.66 89.98 157.9 176.25 90.09 145.24 158.89 68.5 57.75 49.2 136.35 38.94 49.85 143.88 99.78 53.96 56.5
    U 269.19 481.04 453.15 395.75 237.65 203.85 439.67 560.01 373.11 402.76 374.4 343.33 250.23 140.86 355.71 110.48 188.15 376.46 299.68 182.04 258.38
    Tm 13.43 24.19 43.2 38.77 14.7 21.83 38.66 40.7 21.94 34.31 37.97 16.34 14.53 12.22 33.03 9.68 12.45 34.9 23.92 13.59 14.08
    Yb 169.13 292.98 511.43 454.99 177.93 264.06 456.96 474.28 262.13 401.95 447.9 196.76 183.49 150.25 395.25 119.49 156.39 405.31 281.28 167.82 168.68
    Lu 39.09 65.37 110.66 94.3 39.23 58.62 97.83 101.41 60.68 88.61 97.18 44.1 42.45 33.97 87.05 26.89 36.09 90.08 62.6 38.78 38.73
    Hf 6856 6135 5848 6435 7716 6154 6563 6263 6921 6030 6130 7702 5883 7656 5824 6474 6023 5979 5625 5802 6919
    Nb 0.287 0.494 0.8 0.76 0.34 0.35 0.55 0.87 0.469 0.55 0.6 0.288 0.275 0.257 0.6 0.208 0.225 0.522 0.46 0.236 0.306
    Ta 0.121 0.188 0.247 0.241 0.135 0.166 0.23 0.247 0.233 0.191 0.218 0.145 0.117 0.089 0.226 0.077 0.118 0.218 0.2 0.124 0.146
    Ti 3.21 17.64 7.52 7.26 3.8 6.19 10.51 7.15 4.91 27.42 7.07 2.8 3.48 4.11 15.58 3.41 4.34 6.89 9.37 4.37 3.64
    P 86 125 229 222 91 162 184 226 128 173 197 87 103 80 194 87 119 193 157 114 81
    ∑REE 329 596 1051 943 356 528 928 999 526 826 909 393 358 297 788 236 303 833 578 329 333
    Th/U 0.939 1.157 1.463 1.607 1.028 1.051 1.377 1.655 1.128 1.389 1.313 1.057 1.036 0.893 1.372 0.990 0.850 1.338 1.383 0.920 0.971
    (Sm/La)N 25.144 44.028 74.809 37.657 35.205 40.289 46.617 31.984 40.237 94.572 18.833 36.063 29.141 39.181 25.051 36.067
    (Lu/Gd)N 58.675 42.480 36.904 33.492 43.658 42.195 36.677 31.875 49.241 37.931 40.528 48.215 54.086 46.191 48.638 44.949 52.328 38.520 38.485 52.292 52.399
    Ce/Ce* 13.781 16.269 21.363 27.619 16.269 17.622 17.284 18.619 17.912 26.393 12.641 19.071 18.629 15.925 12.826 16.910
    Eu/Eu* 1.173 1.002 0.880 0.914 0.917 0.900 0.898 0.899 0.914 0.964 0.918 0.972 0.933 0.868 0.926 0.853 0.984 0.889 0.898 0.899 1.010
    注:(Sm/La)N表示元素球粒陨石标准化后的比值,球粒陨石标准化值据参考文献[42],Ce/Ce*= CeN/(LaN×PrN)0.5
    下载: 导出CSV

    表 3  长沟河闪长质片麻岩锆石Lu-Hf同位素分析结果

    Table 3.  Zircon Lu-Hf isoplot data of Changgouhe dioritic gneiss

    点号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) tDM1Hf/Ma tDM2Hf/Ma fLu/Hf
    比值
    1 441.4 0.029987 0.000927 0.282696 0.000012 -2.69 6.75 786.91 992.30 -0.97
    2 459.6 0.040193 0.001325 0.282790 0.000022 0.63 10.34 661.61 778.29 -0.96
    4 444.1 0.066658 0.002178 0.282724 0.000023 -1.69 7.44 772.59 950.44 -0.93
    5 462.4 0.014302 0.000483 0.282749 0.000015 -0.82 9.21 704.12 852.37 -0.99
    6 467.8 0.045459 0.001529 0.282806 0.000022 1.19 11.01 642.40 741.74 -0.95
    7 463.3 0.049045 0.001584 0.282755 0.000024 -0.62 9.09 716.84 860.50 -0.95
    9 448.1 0.066724 0.002160 0.282691 0.000027 -2.86 6.36 820.61 1022.58 -0.93
    10 464.0 0.068375 0.002172 0.282829 0.000023 2.02 11.57 619.37 703.52 -0.93
    12 460.3 0.063296 0.002090 0.282740 0.000027 -1.15 8.35 748.46 905.55 -0.94
    13 469.0 0.028483 0.000969 0.282739 0.000023 -1.17 8.85 727.34 880.45 -0.97
    14 446.7 0.050080 0.001629 0.282729 0.000022 -1.51 7.83 754.10 927.69 -0.95
    15 464.2 0.028625 0.000953 0.282724 0.000018 -1.69 8.23 747.63 915.82 -0.97
    16 444.1 0.022458 0.000777 0.282713 0.000016 -2.08 7.47 759.48 948.97 -0.98
    18 440.7 0.023757 0.000800 0.282725 0.000018 -1.67 7.79 743.91 925.80 -0.98
    20 442.0 0.035065 0.001182 0.282734 0.000024 -1.35 8.03 738.57 911.67 -0.96
    21 441.9 0.024024 0.000771 0.282718 0.000023 -1.90 7.60 752.34 938.95 -0.98
    23 486.1 0.017719 0.000697 0.282679 0.000031 -3.28 7.20 805.53 998.55 -0.98
    24 461.6 0.035518 0.001199 0.282750 0.000021 -0.78 9.01 716.01 864.31 -0.96
    26 463.2 0.032227 0.001092 0.282794 0.000023 0.77 10.63 651.68 762.41 -0.97
    28 441.3 0.027411 0.000933 0.282719 0.000027 -1.87 7.56 754.58 940.74 -0.97
    29 464.3 0.027870 0.001025 0.282735 0.000026 -1.30 8.60 733.51 892.43 -0.97
    注:εHf(t)= 10000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM1Hf=1/λ×ln{1+ [(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDM2Hf=tDM1Hf- (tDM1Hf- t) × [(fcc-fs)/(fcc-fDM)];fLu/Hf=(176Lu/177Hf)S/ (176Lu/177Hf)CHUR- 1;其中:λ = 1.867 × 10-11/a[43];(176Lu/177Hf)S和(176Hf/177Hf)S为样品测量值;(176Lu/177Hf)CHUR= 0.0332,(176Hf/177Hf)CHUR,0= 0.282772[40];(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM= 0.28325;(176Lu/177Hf)平均地壳= 0.015[44]fcc=[(176Lu/177Hf)平均地壳/(176Lu/177Hf)CHUR]-1;fDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1;t为锆石结晶年龄
    下载: 导出CSV
  • [1]

    许志琴, 杨经绥, 李海兵, 等.中央造山带早古生代地体构架与高压/超高压变质带的形成[J].地质学报, 2006, 80(12):1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

    [2]

    杨经绥, 许志琴, 马昌前, 等.复合造山作用和中国中央造山带的科学问题[J].中国地质, 2010, 37(1):1-11. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201001001

    [3]

    Cheng H, Zhang C, Vervoort J D, et al. Timing of eclogite facies metamorphism in the North Qinling by U-Pb and Lu-Hf geochronology[J]. Lithos, 2012, 136/139(4):46-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b312adebb1b8b03724c3afc6d54ba3a9

    [4]

    Li Y, Yang J, Dilek Y, et al. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China:Record of subduction initiation and backarc basin development[J]. Gondwana Research, 2015, 27(2):733-744. doi: 10.1016/j.gr.2014.03.006

    [5]

    胡能高, 赵东林, 徐柏青, 等.北秦岭含柯石英榴辉岩的发现及其意义[J].科学通报, 1994, 39(21):2013-2013. http://www.cnki.com.cn/Article/CJFD1994-KXTB199421027.htm

    [6]

    张旗.蛇绿岩研究的进展[J].四川地质科技情报, 1994, (Z1):46-46. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606025

    [7]

    陈丹玲, 刘良.北秦岭榴辉岩及相关岩石年代学的进一步确定及其对板片俯冲属性的约束[J].地学前缘, 2011, 18(2):158-169. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102014

    [8]

    李王晔, 李曙光, 裴先治, 等.西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄[J].岩石学报, 2007, 23(11):2836-2844. doi: 10.3969/j.issn.1000-0569.2007.11.014

    [9]

    宫相宽, 陈丹玲, 朱小辉, 等.北秦岭西段三叠纪超镁铁岩-正长岩体的确定及其地质意义[J].岩石学报, 2016, 32(1):177-192. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601021

    [10]

    裴先治, 李勇, 陆松年, 等.西秦岭天水地区关子镇中基性岩浆杂岩体锆石U-Pb年龄及其地质意义[J].地质通报, 2005, 24(1):23-29. doi: 10.3969/j.issn.1671-2552.2005.01.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20050104&flag=1

    [11]

    Zhang H F, Zhang B R, Harris N, et al. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China:Constraints on petrogenesis and tectonic affinity[J]. Journal of Asian Earth Sciences, 2006, 27(6):751-764. doi: 10.1016/j.jseaes.2005.07.008

    [12]

    闫全人, 王宗起, 闫臻, 等.秦岭勉略构造混杂带康县-勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义[J].地质论评, 2007, 53(6):755-764. doi: 10.3321/j.issn:0371-5736.2007.06.009

    [13]

    陈隽璐, 李好斌, 王洪亮, 等.秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义[J].吉林大学学报, 2007, 37(3):423-431. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200703002

    [14]

    陈隽璐, 徐学义, 王洪亮, 等.北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J].现代地质, 2008, 22(1):45-52. doi: 10.3969/j.issn.1000-8527.2008.01.006

    [15]

    王洪亮, 何世平, 陈隽璐, 等.北秦岭西段红花铺俯冲型侵入体LA-ICPMS定年及其地质意义[J].现代地质, 2006, 20(4):536-544. doi: 10.3969/j.issn.1000-8527.2006.04.003

    [16]

    Dong Y, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2015, 29(1):1-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=085cd7733325cc3ec3328cb7dfd6e84e

    [17]

    Mohammed Ishag Mohammed Abdallsamed.秦岭古生代花岗岩的成因: 来自锆石U-Pb年代学、地球化学和同位素的证据[D].中国地质大学博士学位论文, 2018: 1-82http://cdmd.cnki.com.cn/Article/CDMD-10491-1018817012.htm

    [18]

    徐学义, 何世平, 王洪亮, 等.早古生代北秦岭-北祁连结合部构造格局的地层及构造岩浆事件约束[J].西北地质, 2008, 41(1):1-21. doi: 10.3969/j.issn.1009-6248.2008.01.001

    [19]

    Song S, Niu Y, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4):1378-1401. doi: 10.1016/j.gr.2012.02.004

    [20]

    Dong Y, Zhang G, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China:Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3):213-237. doi: 10.1016/j.jseaes.2011.03.002

    [21]

    Dong Y, Zhang G, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011, 122(1/2):39-56. http://cn.bing.com/academic/profile?id=a51da55bdeaa7afea0b1b2a9694be823&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    孟祥舒, 何艳红, 陈亮, 等.秦岭-祁连结合部位早古生代埃达克岩的发现及其造山作用意义[J].地质学报, 2017, 91(12):2679-2696 doi: 10.3969/j.issn.0001-5717.2017.12.007

    [23]

    宋志高, 贾群子, 张治洮, 等.北秦岭-北祁连(天水-宝鸡)间早生古代火山岩系及其构造连接关系的研究[J].西北地质科学, 1991, (34):1-82. http://www.cnki.com.cn/Article/CJFD1991-XBFK199134000.htm

    [24]

    张维吉, 孟宪恂, 胡健民, 等.祁连-北秦岭造山带接合部位构造特征与造山过程[M].西安:西北大学出版社, 1994:1-283.

    [25]

    裴先治, 丁仨平, 李佐臣, 等.西秦岭北缘早古生代天水-武山构造带及其构造演化[J].地质学报, 2009, 83(11):1547-1564. doi: 10.3321/j.issn:0001-5717.2009.11.002

    [26]

    何艳红, 孙勇, 陈亮, 等.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].岩石学报, 2005, 21(1):125-134. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501012

    [27]

    魏方辉.北祁连造山带东端早古生代物质组成、变形特征及其构造演化过程[D].长安大学硕士学位论文, 2013: 1-130http://cdmd.cnki.com.cn/Article/CDMD-10710-1014022227.htm

    [28]

    李王晔.西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究[D].中国科学技术大学博士学位论文, 2008: 1-154

    [29]

    何世平, 王洪亮, 徐学义, 等.北祁连东段红土堡基性火山岩和陈家河中酸性火山岩地球化学特征及构造环境[J].岩石矿物学杂志, 2007, 26(4):295-309. doi: 10.3969/j.issn.1000-6524.2007.04.001

    [30]

    何世平, 王洪亮, 徐学义, 等.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义[J].地球科学进展, 2007, 22(2):43-151. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200702004

    [31]

    裴先治, 李佐臣, 李瑞保, 等.祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MS U-Pb年龄:源区特征和沉积时代的限定[J].地学前缘, 2012, 19(5):205-224. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201205022.htm

    [32]

    刘成军.秦祁结合部位物质组成、构造演化过程及交接关系研究[D].长安大学硕士学位论文, 2013: 1-109http://cdmd.cnki.com.cn/Article/CDMD-10710-1014022223.htm

    [33]

    徐可心.秦祁结合部位前寒武纪年代学和地球化学研究: 来自陇山岩群的证据[D].西北大学硕士学位论文, 2018: 1-87http://cdmd.cnki.com.cn/Article/CDMD-10697-1018104842.htm

    [34]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    [35]

    Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008.247(1/2):100-118. http://cn.bing.com/academic/profile?id=ded968aedf4c5376cf3c0a67a8b2b991&encoded=0&v=paper_preview&mkt=zh-cn

    [36]

    Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interence corrections[J]. Anal. At. Spectrom., 2002, 17:1567-1574 doi: 10.1039/b206707b

    [37]

    Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust Treaties on Geochemistry. Oxford: Elsevier Pergamon, 2003, 3: 1-64.

    [38]

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochimica et Cosmochimica Acta, 2000, 64(1):133-147 doi: 10.1016/S0016-7037(99)00343-9

    [39]

    Albarède F, Scherer E E, Blichert-Toft J, et al. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant[J]. Geochimica Et Cosmochimica Acta, 2006, 70(5):1261-1270. doi: 10.1016/j.gca.2005.09.027

    [40]

    Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J].Earth and Planetary Science Letters, 1997, 148(1/2):243-258. http://cn.bing.com/academic/profile?id=3b98f85ed58d4e89bfc4a296554bb9fd&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001

    [42]

    Sun McDonough. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [43]

    Söderlund U, Patchett P J, Vervoort J D, et al. The Decay Constant of 176Lu Determined from Lu-Hf and U-Pb Isotope Systematics of Terrestrial Precambrian High-Temperature Mafic Intrusions[J]. Meteoritics & Planetary Science Supplement, 2004:38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0792ad455eb65fadd619aef64d4bef9

    [44]

    Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3):237-269. http://cn.bing.com/academic/profile?id=c097aa188f06ce2fa75dc423db446c4e&encoded=0&v=paper_preview&mkt=zh-cn

    [45]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [46]

    李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究, 2009, 32(3):161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001

    [47]

    Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Rev. Miner. Geochem., 2003, 53(1):27-62. doi: 10.2113/0530027

    [48]

    Spandler C, Hammerli J, Yaxley G M. An experimental study of trace element distribution during partial melting of mantle heterogeneities[J]. Chemical Geology, 2017, 462:74-87. doi: 10.1016/j.chemgeo.2017.05.002

    [49]

    Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5):602-622. http://cn.bing.com/academic/profile?id=3ebd3e5d48440b375300b4ad9e9bd706&encoded=0&v=paper_preview&mkt=zh-cn

    [50]

    雷玮琰.不同成因锆石的微量元素特征研究[D].中国地质大学(北京)博士学位论文, 2013: 1-109.http://cdmd.cnki.com.cn/Article/CDMD-11415-1016190132.htm

    [51]

    Ballard J R, Palin M J, Campbell I H. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy & Petrology, 2002, 144(3):347-364. https://link.springer.com/article/10.1007/s00410-002-0402-5

    [52]

    Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1

    [53]

    Grimes C B, John B E, Cheadle M J, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere[J]. Contributions to Mineralogy & Petrology, 2009, 158(6):757-783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36b4aa5025ad5971226de0c9e13a3caf

    [54]

    Lei W, Shi G, Santosh M, et al. Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment:a case study from the Myanmar jadeitite[J]. Lithos, 2016, 266/267:16-27. doi: 10.1016/j.lithos.2016.09.031

    [55]

    Tretiakova I G, Belousova E A, Malkovets V G, et al. Recurrent magmatic activity on a lithosphere-scale structure:Crystallization and deformation in kimberlitic zircons[J]. Gondwana Research, 2017, 42:126-132. doi: 10.1016/j.gr.2016.10.006

    [56]

    何艳红, 陈亮, 孙勇, 等.陇县地区新街片麻岩套锆石年龄及其地质意义[J].西北大学学报:自然科学版, 2005, 35(5):625-627. http://d.old.wanfangdata.com.cn/Periodical/xbdxxb200505031

    [57]

    裴先治, 孙仁奇, 丁仨平, 等.陇东地区阎家店闪长岩LA-ICPMS锆石U-Pb测年及其地质意义[J].中国地质, 2007, 34(1):8-16. doi: 10.3969/j.issn.1000-3657.2007.01.002

    [58]

    魏方辉, 裴先治, 李瑞保, 等.甘肃天水地区早古生代黄门川花岗闪长岩体LA-ICP-MS锆石U-Pb定年及构造意义[J].地质通报, 2012, 31(9):1496-1509. doi: 10.3969/j.issn.1671-2552.2012.09.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120913&flag=1

    裴先治, 李勇, 丁仨平, 等.天水市幅1: 25万区域地质调查(修测)成果报告.长安大学地质调查研究院, 2004.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  421
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-11-02
修回日期:  2019-03-14
刊出日期:  2019-10-15

目录