-
摘要:
通过分析地球化学数据的元素值属性和空间位置,提出一种基于邻域约束聚类的方法,使用该方法对地球化学元素聚类后,能提取矩形、环状、半环状等特殊形状,进而提取地球化学异常。选取河南崤山地区2个实验区的地球化学数据进行实验,实验一的结果表明,出现矩形的位置与已知钨矿矿点位置一致;实验二的结果表明,出现环形的位置与已知铜矿矿点位置一致。实验证明了基于邻域约束聚类的方法在提取地球化学异常方面的有效性。
Abstract:Geochemical anomalies often have a strong correlation with ore deposits. The study of effective methods for extracting geochemical anomalies is of great significance for prospecting. The advent of the era of big data and artificial intelligence poses new challenges for the extraction of geochemical anomalies that are automatic and independent of expert knowledge. Geostatistical research shows that it is a new geochemical prospecting idea to identify geochemical anomalies by identifying the special spatial forms of geochemical anomalies, such as lattices, bands, and rings. By analyzing the element value attribute and spatial position of geochemical data, this paper proposes a method based on neighborhood constrained clustering. After clustering geochemical elements, it can extract special shapes such as rectangle, ring and semi-ring and extract geochemical anomalies. In this paper, the geochemical data of two experimental areas in the Xiaoshan area of Henan Province were selected for experiments. The results of Experiment 1 show that the position of the rectangle appears consistent with the location of the known tungsten ore site, whereas the results of Experiment 2 show that the position of the ring is consistent with the location of the known copper orebody. The experiment proves the effectiveness of the method based on neighborhood constrained clustering in extracting geochemical anomalies.
-
Key words:
- geochemical anomaly /
- neighborhood constraint /
- clustering
-
-
表 1 三种聚类算法的优缺点分析
Table 1. Analysis of advantages and disadvantages of three clustering algorithms
聚类算法 优点 缺点 K-Means 简单易实现,适用性强 需要用户事先指定类簇个数;聚类结果对初始类簇中心的选取较为敏感;容易陷入局部最优 DBSCAN 聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类 当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差;对于高维数据,存在“维数灾难”;参数难设置,且无法指定聚类数量 谱聚类 算法在处理稀疏和高维数据上具有一定的优势 若聚类的维度非常高,由于降维的幅度不够,谱聚类的运行速度会降低 -
[1] Harris J R, Wilkinson L, Grunsky E C. Effective use and interpretation of lithogeochemical data in regional mineral exploration programs:application of Geographic Information Systems (GIS) technology[J]. Ore Geology Reviews, 2000, 16(3/4):107-143. http://cn.bing.com/academic/profile?id=113ef43b15f4e3af6453044ad81aeaf0&encoded=0&v=paper_preview&mkt=zh-cn
[2] Gałuszka A. A review of geochemical background concepts and an example using data from Poland[J]. Environmental Geology, 2007, 52(5):861-870. doi: 10.1007/s00254-006-0528-2
[3] Wackemagel H. Multivariate geostatistics:an introduction with applications[M]. Springer, 2003.
[4] Grunsky E C, Agterberg F P. Spatial and multivariate analysis of geochemical data from metavolcanic rocks in the Ben Nevis area, Ontario[J]. Mathematical Geology, 1988, 20(7):825-861. doi: 10.1007/BF00890195
[5] Cheng Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2):314-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c3be28e39b72c43481928ec2df8fbef
[6] Zuo R G, Xiong Y H. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods[J]. Natural Resources Research, 2018, 27(1):5-13. doi: 10.1007/s11053-017-9357-0
[7] Chen Y L. Mineral potential mapping with a restricted Boltzmann machine[J]. Ore Geology Reviews, 2015, 71:749-760. doi: 10.1016/j.oregeorev.2014.08.012
[8] Zuo R G. Machine learning of mineralization-related geochemical anomalies:A review of potential methods[J]. Natural Resources Research, 2017, 26(4):457-464. doi: 10.1007/s11053-017-9345-4
[9] Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2):109-130. doi: 10.1016/0375-6742(94)90013-2
[10] Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]. Elsevier, 2008.
[11] Cheng Q M, Xu Y G, Grunsky E. Integrated spatial and spectrum method for geochemical anomaly separation[J]. Natural Resources Research, 2000, 9(1):43-52. doi: 10.1023/A:1010109829861
[12] Cheng Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2):314-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c3be28e39b72c43481928ec2df8fbef
[13] Aitchison J. The statistical analysis of compositional data[M]. The Blackburn Press, 1986.
[14] Egozcue J J, Pawlowsky-Glahn V, Mateu-Figueras G, et al. Isometric logratio transformations for compositional data analysis[J]. Mathematical Geology, 2003, 35(3):279-300. doi: 10.1023/A:1023818214614
[15] 周永章, 张良均, 张奥多, 王俊.地球科学大数据挖掘与机器学习[M].广州:中山大学出版社, 2018.
[16] 张旗, 周永章.大数据助地质腾飞-2018第11期大数据专题"序"[J].岩石学报, 2018, 34(11):3167-3172.
[17] 焦守涛, 周永章, 张旗等.基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J].岩石学报, 2018, 34(11):3189-3194. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811004
[18] 周永章, 陈烁, 张旗, 等.大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J].岩石学报, 2018, 34(2):256-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201802001
[19] Chen Y L, Wu W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data[J]. Geochemistry Exploration Environment Analysis, 2017, 17(3):231-238. doi: 10.1144/geochem2016-024
[20] Beucher A, Österholm P, Martinkauppi A, et al. Artificial neural network for acid sulfate soil mapping:Application to the Sirppujoki River catchment area, south-western Finland[J]. Journal of Geochemical Exploration, 2013, 125:46-55. doi: 10.1016/j.gexplo.2012.11.002
[21] Chen Y L, Lu L J, Li X B. Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly[J]. Journal of Geochemical Exploration, 2014, 140:56-63. doi: 10.1016/j.gexplo.2014.02.013
[22] O'Brien J J, Spry P G, Nettleton D, et al. Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb-Zn-Ag deposits in the Broken Hill domain, Australia[J]. Journal of Geochemical Exploration, 2015, 149:74-86. doi: 10.1016/j.gexplo.2014.11.010
[23] Xiong Y H, Zuo R G. Recognition of geochemical anomalies using a deep autoencoder network[J]. Computers & Geosciences, 2016, 86:75-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f659583bb053f79afe258c22bcc05d8a
[24] Zaremotlagh S, Hezarkhani A. The use of decision tree induction and artificial neural networks for recognizing the geochemical distribution patterns of LREE in the Choghart deposit, Central Iran[J]. Journal of African Earth Sciences, 2017, 128:37-46. doi: 10.1016/j.jafrearsci.2016.08.018
[25] 时建民, 石绍山, 江山, 等.环形构造与地球化学异常相关性分析及其找矿意义[J].地质与资源, 2016, 25(2):181-185. doi: 10.3969/j.issn.1671-1947.2016.02.016
[26] 马生明, 朱立新, 刘海良, 等.甘肃北山辉铜山铜矿地球化学异常结构研究[J].地球学报, 2011, 32(4):405-412. doi: 10.3975/cagsb.2011.04.03
[27] 李庆谋, 成秋明.分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J].地球科学, 2004(1):109-118. doi: 10.3321/j.issn:1000-2383.2004.01.019
[28] Shi J B, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8):888-905. doi: 10.1109/34.868688
-