基岩区构造地质填图方法思考、实践、探索

张进, 曲军峰, 张庆龙, 李锦轶, 郑荣国, 张北航, 赵衡, 解国爱, 刘建峰, 贺振宇. 基岩区构造地质填图方法思考、实践、探索[J]. 地质通报, 2018, 37(2-3): 192-221.
引用本文: 张进, 曲军峰, 张庆龙, 李锦轶, 郑荣国, 张北航, 赵衡, 解国爱, 刘建峰, 贺振宇. 基岩区构造地质填图方法思考、实践、探索[J]. 地质通报, 2018, 37(2-3): 192-221.
ZHANG Jin, QU Junfeng, ZHANG Qinglong, LI Jinyi, ZHENG Rongguo, ZHANG Beihang, ZHAO Heng, XIE Guoai, LIU Jianfeng, HE Zhenyu. The structural mapping in exposed bedrock areas: methods, practice and exploration[J]. Geological Bulletin of China, 2018, 37(2-3): 192-221.
Citation: ZHANG Jin, QU Junfeng, ZHANG Qinglong, LI Jinyi, ZHENG Rongguo, ZHANG Beihang, ZHAO Heng, XIE Guoai, LIU Jianfeng, HE Zhenyu. The structural mapping in exposed bedrock areas: methods, practice and exploration[J]. Geological Bulletin of China, 2018, 37(2-3): 192-221.

基岩区构造地质填图方法思考、实践、探索

  • 基金项目:
    国家自然科学基金项目《阿拉善地块主要断裂系统性质、阶段和构造背景研究》(批准号:41572190)和中国地质调查局项目《狼山儿驼庙幅、巴彦哈拉幅1:5万构造填图全国典型示范试点》(编号:12120115069601)
详细信息
    作者简介: 张进(1973-), 男, 博士, 研究员, 从事构造地质研究和填图工作。E-mail: zhangjinem@sina.com
  • 中图分类号: P54

The structural mapping in exposed bedrock areas: methods, practice and exploration

  • 构造地质填图是地质填图的重要内容,也是构造地质研究的基础源泉。填图的主要目标是确定地质体的空间展布规律、变形的几何学和运动学特征,建立填图区构造格架和构造演化序列,探讨构造运动与岩浆活动、变质作用和成矿作用的关系;主要内容是确定填图单元、表示各种(可填的)构造要素。填图的详细程度根据填图的比例尺而定,比例尺越大,可填制和表示的构造要素越多。填图中要重视中小构造要素的观察和描述,构造要素的测量要尽可能多。主要方法包括穿越法、追索法和查证法;比例尺越大,追索法的重要性越大。卫星遥感影像是填图的重要基础,影像的使用贯穿填图的始终。

  • 加载中
  • 图 1  小型线理主要类型[7]

    Figure 1. 

    图 2  褶皱不同部位的次级褶皱类型[11]

    Figure 2. 

    图 3  主断层及其派生次级断层(裂)[18]

    Figure 3. 

    图 4  P、R剪切面组合形成的走滑断层带波状延伸特征[31]

    Figure 4. 

    图 5  R剪切断层面表现类型(右行剪切)[12]

    Figure 5. 

    图 6  PR和RX断面类型[30]

    Figure 6. 

    图 7  断层面上发育的不同断面构造,示右行走滑(湖南雪峰山)

    Figure 7. 

    图 8  P剪切断层面表现类型(右行剪切)[12]

    Figure 8. 

    图 9  张性破裂与断层面关系[12]

    Figure 9. 

    图 10  露头尺度构造与区域尺度构造的关系[44]

    Figure 10. 

    图 11  北山造山带二叠系叠加褶皱地质图[68]

    Figure 11. 

    图 12  巴彦乌拉山中段(A)和南段(B)地质图[76]

    Figure 12. 

    图 13  香山寺口子地区地质图.

    Figure 13. 

    图 14  小峡背斜地质图[82]

    Figure 14. 

    图 15  狼山地区1: 5万构造地质填图(局部)

    Figure 15. 

    图 16  陈蔡岩群地质图

    Figure 16. 

  • [1]

    高秉璋, 洪大卫, 郑基俭, 等.花岗岩类区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.

    [2]

    房立民, 杨振升, 李勤, 等.变质岩区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.

    [3]

    熊家镛, 卢重明, 徐怀艾, 等.沉积岩区1:5万区域地质填图方法指南[M].武汉:中国地质大学出版社, 1991.

    [4]

    熊家镛, 张志斌, 蔡麟荪.陆内造山带1:50000区域地质填图方法研究——以哀牢山造山带为例[M].武汉:中国地质大学出版社, 1998.

    [5]

    McClay K. The Mapping of Geological Structures[M]. John Wiley & Sons, 2nd edition, 2004.

    [6]

    Davis G H, Reynolds S J, Kluth C F. Structural geology of rocks and regions (Third edition)[M]. John Wiley & Sons, 2012.

    [7]

    Turner F J, Weiss L E. Structural analysis of metamorphic tectonites[M]. Me. Graw-Htll Book Comp., 1963.

    [8]

    Sander B. Gefugekunde der Gesteine[M]. Vienna. Julius Springer, 1930.

    [9]

    Backlund H. Petrogenetische Studien an Taimyrgesteinen[J]. GFF, 1918, 40(2):101-203. http://www.tandfonline.com/doi/pdf/10.1080/11035891809444435?needAccess=true

    [10]

    Holmes A. The Nomenclature Of Petrology[M]. London, HardPress Publishing, 1928.

    [11]

    Fossen H. Structural Geology. Structural geology[M]. Cambridge University Press, 2010.

    [12]

    Petit J P. Criteria for the sense of movement on fault surfaces in brittle rocks[J]. Journal of Structural Geology, 1987, 9:597-608. doi: 10.1016/0191-8141(87)90145-3

    [13]

    Doblas M. Slickenside kinematic indicators[J]. Tectonophysics, 1998, 295:187-197. doi: 10.1016/S0040-1951(98)00120-6

    [14]

    Angelier J. Fault slip analysis and palaeostress reconstruction[C]//Hancock P L. Continental Deformation. London: Pergamon Press, 1994: 53-100.

    [15]

    Tjia H D. Slickensides and fault movements[J]. GSA Bulletin, 1964, 75:683-686. doi: 10.1130/0016-7606(1964)75[683:SAFM]2.0.CO;2

    [16]

    Riedel W. Zur Mechanik geologischer brucherscheinungen[J]. Zentralblatt fur Mineralogie, Geologie und Palaontologie, 1929, 1929B:354-368. http://www.oalib.com/references/19190949

    [17]

    Groshong R H J. Low-temperature deformation mechanisms and their interpretation[J]. GSA Bulletin, 1988, 100:1329-1360. doi: 10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2

    [18]

    Logan J M, Dengo C A, Higgs N G, et al. Fabrics of experimental fault zones: their development and relationship to mechanical behavior[C]//Evans B, Wong T. Fault mechanics and transport properties of rocks. San Diego: Academic Press, 1992: 33-67.

    [19]

    Brosch F J, Kurz W. Fault damage zones dominated by high-angle fractures within layer-parallel brittle shear zones:examples from the eastern Alps[J]. Geological Society, London, Special Publications, 2008, 299(1):75-95. doi: 10.1144/SP299.5

    [20]

    Richard P D, Naylor M A, Koopman A. Experimental models of strike-slip tectonics[J]. Petroleum Geoscience, 1995, 1:71-80. doi: 10.1144/petgeo.1.1.71

    [21]

    Keller J V A, Hall S H, McClay K R. Shear fracture pattern and microstructural evolution in transpression fault zones from field and laboratory studies[J]. Journal of Structural Geology, 1997, 19:1173-1187. doi: 10.1016/S0191-8141(97)00042-4

    [22]

    Tindall S E. Development of oblique-slip basement-cored uplifts: Insights from the Kaibab uplift and from physical models[D]. The University of Arizona: Ph D Thesis, 2000.

    [23]

    Tindall S E, Davis G H. Monocline development by oblique-slip fault-propagation folding:the East Kaibab monocline, Colorado Plateau, Utah[J]. Journal of Structural Geology, 1999, 21:1303-1320. doi: 10.1016/S0191-8141(99)00089-9

    [24]

    Naylor M A, Mandl G, Sijpesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8:737-752. doi: 10.1016/0191-8141(86)90022-2

    [25]

    Kim Young-Seog, Peacock D C P, Sanderson D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26:503-517. doi: 10.1016/j.jsg.2003.08.002

    [26]

    Hancock P L, Barka A A. Kinematic indicators on active normal faults in western Turkey[J]. Journal of Structural Geology, 1987, 9:573-584. doi: 10.1016/0191-8141(87)90142-8

    [27]

    Chester F M, Chester J S. Stress and deformation along wavy frictional faults[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B10):23421-23430. doi: 10.1029/2000JB900241

    [28]

    Davis G A, 郑亚东.变质核杂岩的定义、类型及构造背景[J].地质通报, 2002, 21(4):185-192. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20020457&flag=1

    [29]

    Sagy A, Brodsky E E, Axen G J. Evolution of fault-surface roughness with slip[J]. Geology, 2007, 35(3):283-286. doi: 10.1130/G23235A.1

    [30]

    Gamond J F. Displacement features associated with fault zones:a comparison between observed examples and experimental models[J]. Journal of Structural Geology, 1983, 5:33-45. doi: 10.1016/0191-8141(83)90005-6

    [31]

    Cowgill E, Arrowsmith J R, Yin A, et al. The akato tagh bend along the altyn tagh fault, northwest Tibet 2:active deformation and the importance of transpression and strain hardening within the Altyn Tagh system[J]. GSA Bulletin, 2004, 116:1443-1464. doi: 10.1130/B25360.1

    [32]

    Woodcock N H, Schubert C. Continent strike-slip tectonics[C]//Hancock P L. Continental Deformation. London: Pergamon Press, 1994: 251-263.

    [33]

    Hancock P L. Brittle microtectonics:principles and practice[J]. Journal of Structural Geology, 1985, 7:437-457. doi: 10.1016/0191-8141(85)90048-3

    [34]

    Pollard D D, Segall P, Delaney P T. Formation and interpretation of dilatant echelon cracks[J]. GSA Bulletin, 1982, 93(12):1291-1303. doi: 10.1130/0016-7606(1982)93<1291:FAIODE>2.0.CO;2

    [35]

    Rothery E. En echelon vein array development in extension and shear[J]. Journal of Structural Geology, 1988, 10(1):63-71. doi: 10.1016/0191-8141(88)90128-9

    [36]

    Aydin A, Schultz R A. Effect of mechanical interaction on the development of strike-slip faults with echelon patterns[J]. Journal of Structural Geology, 1990, 12(1):123-129. doi: 10.1016/0191-8141(90)90053-2

    [37]

    Tjia H D. Fault movement, reoriented stress field and subsidiary structures[J]. Pacific Geology, 1971, 5, 49-90. https://www.sciencedirect.com/science/article/pii/0031920176900650

    [38]

    Doblas M, Mahecha V, Hoyos M. Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain[J]. Journal of Structural Geology, 1997, 19(2):159-170. doi: 10.1016/S0191-8141(96)00086-7

    [39]

    Platt J P, Vissers R L M. Extensional structures in anisotropic rocks[J]. Journal of Structural Geology, 1980, 2:397-410. doi: 10.1016/0191-8141(80)90002-4

    [40]

    Hancock P L. The analysis of en-echelon veins[J]. Geological Magzine, 1972, 109:269-276. doi: 10.1017/S0016756800039315

    [41]

    Norris D K, Barron K. Structural analysis of features on natural and artificial faults[C]//Baer A, Norris D K. Research in Tectonics. Geological Survey of Canada Paper, 1969: 68-52, 136-167.

    [42]

    Means W D. A newly recognized type of slickenside striation[J]. Journal of Structural Geology, 1987, 9:585-590. doi: 10.1016/0191-8141(87)90143-X

    [43]

    Engelder J T. Microscopic wear grooves on slickensides:Indicators of paleoseismicity[J]. Journal of geophysical Research, 1974, 79(29):4387-4392. doi: 10.1029/JB079i029p04387

    [44]

    Wilson G. The tectonic significance of small scale structures and their importance to the geologist in the field[M]. Societé Geologique de Belgique, 1961.

    [45]

    Hansen E. Strain Facies[M]. Berlin, New York, Springer-Verlag, 1971.

    [46]

    Julivert M, Marcos A. Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain)[J]. American Journal of Science, 1973, 273(5):353-375. doi: 10.2475/ajs.273.5.353

    [47]

    Hatcher R D. Macroscopic polyphase folding illustrated by the Toxaway dome, eastern Blue Ridge, South Carolina-North Carolina[J]. GSA Bulletin, 1977, 88(11):1678-1688. doi: 10.1130/0016-7606(1977)88<1678:MPFIBT>2.0.CO;2

    [48]

    Grujic D, Walter T R, Gärtner H. Shape and structure of analogue models of refolded layers[J]. Journal of Structural Geology, 2002, 24(8):1313-1326. doi: 10.1016/S0191-8141(01)00134-1

    [49]

    Ramsay J G. Folding and Fracturing of Rocks[J]. New York-London, 1967. http://is.muni.cz/publication/472138

    [50]

    Ramsay J G, Huber I M. The Techniques of modern structural geology. volume 2:folds and fractures[M]. London-San Diego, 1987.

    [51]

    Ramsay J G, Lisle R J. The Techniques of modern structural geology. volume 3:applications of continuum mechanics in structural geology[M]. London-San Diego, 2000.

    [52]

    Thiessen R. Two-dimensional refold interference patterns[J]. Journal of Structural Geology, 1986, 8(5):563-573. doi: 10.1016/0191-8141(86)90005-2

    [53]

    Thiessen R L, Means W D. Classification of fold interference patterns:a reexamination[J]. Journal of structural Geology, 1980, 2(3):311-316. doi: 10.1016/0191-8141(80)90019-X

    [54]

    Moore R R, Johnson S E. Three-dimensional reconstruction and modelling of complexly folded surfaces using mathematica[J]. Computers & Geosciences, 2001, 27(4):401-418. https://www.sciencedirect.com/science/article/pii/S0098300400000790

    [55]

    Grasemann B, Wiesmayr G, Draganits E, et al. Classification of refold structures[J]. The Journal of Geology, 2004, 112(1):119-125. doi: 10.1086/379696

    [56]

    Weiss L E. Geometry of superposed folding[J]. GSA Bulletin, 1959, 70(1):91-106. doi: 10.1130/0016-7606(1959)70[91:GOSF]2.0.CO;2

    [57]

    Watkinson A J. Patterns of fold interference:influence of early fold shapes[J]. Journal of Structural Geology, 1981, 3(1):19-23. doi: 10.1016/0191-8141(81)90053-5

    [58]

    Johns M K, Mosher S. Physical models of regional fold superposition:the role of competence contrast[J]. Journal of Structural Geology, 1996, 18(4):475-492. https://www.sciencedirect.com/science/article/pii/019181419500100R

    [59]

    Ghosh S K, Ramberg H. Buckling experiments on intersecting fold patterns[J]. Tectonophysics, 1968, 5(2):89-105. doi: 10.1016/0040-1951(68)90083-8

    [60]

    Ghosh S K, Mandal N, Khan D, et al. Modes of superposed buckling in single layers controlled by initial tightness of early folds[J]. Journal of Structural Geology, 1992, 14(4):381-394. doi: 10.1016/0191-8141(92)90100-B

    [61]

    Ghosh S K, Mandal N, Sengupta S, et al. Superposed buckling in multilayers[J]. Journal of Structural Geology, 1993, 15(1):95-111. doi: 10.1016/0191-8141(93)90081-K

    [62]

    Gruji cD. The influence of initial fold geometry on type 1 and type 2 interference patterns:an experimental approach[J]. Journal of Structural Geology, 1993, 15(3/5):293-307. http://cat.inist.fr/?aModele=afficheN&cpsidt=4716735

    [63]

    Li J Y. Late Neoproterozoic and paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3):304-322. https://www.sciencedirect.com/science/article/pii/S1342937X12001852

    [64]

    左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15. https://www.wenkuxiazai.com/doc/730ef92187c24028915fc3a3.html

    [65]

    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4):370-395. doi: 10.2475/ajs.304.4.370

    [66]

    Xiao W, Han C, Yuan C, et al. Middle cambrian to permian subduction-related accretionary orogenesis of northern Xinjiang, NW China:implications for the tectonic evolution of central asia[J]. Journal of Asian Earth Sciences, 2008, 32(2):102-117. https://www.sciencedirect.com/science/article/pii/S1367912007001708

    [67]

    甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社, 1989.

    [68]

    Zhang J, Cunningham D. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 2012, 31:1-19. http://onlinelibrary.wiley.com/doi/10.1029/2011TC003050/full?scrollTo=footer-citing

    [69]

    沈其韩, 耿元生, 王新社, 等.阿拉善地区前寒武纪斜长角闪岩的岩石学、地球化学、形成环境和年代学[J].岩石矿物学杂志, 2005, 24(1):21-31. http://d.wanfangdata.com.cn/Periodical_yskwxzz200501003.aspx

    [70]

    杨振德, 潘行适, 杨易福.阿拉善断块及邻区地质构造特征与矿产[M].北京:科学出版社, 1988.

    [71]

    内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996.

    [72]

    Wu S J, Hu J M, Ren M H, et al. Petrography and zircon U-Pb isotopic study of the bayanwulashan complex:constrains on the paleoproterozoic evolution of the alxa block, westernmost north China craton[J]. Journal of Asian Earth Sciences, 2014, 94:226-239. doi: 10.1016/j.jseaes.2014.05.011

    [73]

    李俊建, 沈保丰, 李惠民, 等.内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄[J].地质通报, 2004, 23(12):1243-1245. doi: 10.3969/j.issn.1671-2552.2004.12.013 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2004012224&flag=1

    [74]

    耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J].中国地质, 2006, 33(1):138-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200601015

    [75]

    耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质, 2007, 34(2):77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702006

    [76]

    Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern alxa block, NW China:new constraints on the relationship between the north China plate and the alxa block[J]. Journal of Structural Geology, 2013, 57:38-57. doi: 10.1016/j.jsg.2013.10.002

    [77]

    Zhang J, Li J Y, Zhang B H, et al. Timing of amalgamation of the alxa block and the north China block:constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 2016:668-669. https://www.sciencedirect.com/science/article/pii/S0040195115006642

    [78]

    Zhang J, Zhang Y P, Xiao W X, et al. Linking the alxa terrane to the eastern gondwana during the early paleozoic:Constraints from detrital zircon U-Pb ages and cambrian sedimentary records[J]. Gondwana Research, 2015, 28(3):1168-1182. doi: 10.1016/j.gr.2014.09.012

    [79]

    Liu S. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China[J]. Journal of Asian Earth Sciences, 1998, 16(4):369-383. doi: 10.1016/S0743-9547(98)00020-8

    [80]

    张进, 马宗晋, 任文军.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制[J].地质学报, 2004, 78(5):600-611. http://www.cnki.com.cn/Article/CJFDTotal-DZKX201502005.htm

    [81]

    王进寿, 张开成, 王占昌, 等.西宁盆地深部构造与地震[J].高原地震, 2006, 18(3):16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gydz200603004

    [82]

    Zhang J, Cunningham D. Polyphase transpressional development of a NNE-striking basement-cored anticline in the Xining basin, northeastern qinghai-tibetan plateau[J]. Geological Magazine, 2013, 150:626-638. doi: 10.1017/S0016756812000866

    [83]

    Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the asian tectonic collage:the intraplate western ordos fold-thrust belt, China[J]. Earth and Planetary Science Letters, 2002, 205(1):13-24. http://linkinghub.elsevier.com/retrieve/pii/S0012821X02010269

    [84]

    Darby B J, Ritts B D. Mesozoic structural architecture of the lang shan, north-central China:intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 2007, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011

    [85]

    Zhang J, Li J Y, Li Y F, et al. Mesozoic-Cenozoic multi-stage intraplate deformation events in the Langshan region and their tectonic implications[J]. Acta Geologica Sinica, 2014, 88(1):78-102. doi: 10.1111/acgs.2014.88.issue-1

    [86]

    Dan W, Li X H, Wang Q, et al. Phanerozoic amalgamation of the alxa block and north China craton:evidence from paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 2016, 32:105-121. doi: 10.1016/j.gr.2015.02.011

    [87]

    Zhao G, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    [88]

    浙江省地质矿产局.浙江省区域地质志[M].北京:地质出版社, 1989.

    [89]

    福建省地质矿产局.福建省区域地质志[M].北京:地质出版社, 1985.

    [90]

    广东省地质矿产局.广东省区域地质志[M].北京:地质出版社, 1988.

    [91]

    水涛.中国东南大陆基底构造格局[J].中国科学(B辑), 1987(4):78-86. http://engine.scichina.com/publisher/scp/journal/SSPC-B0/17/4/10.1360/zb1987-17-4-414

    [92]

    水涛, 徐步台, 梁如华, 等.中国浙闽变质基底地质[M].北京:科学出版社, 1988.

    [93]

    水涛, 徐步台, 梁如华, 等.绍兴-江山古陆对接带[J].科学通报, 1986, 31(6):444-448. http://www.oalib.com/paper/1675500

    [94]

    孔祥生, 包超民, 顾明光.浙江诸暨地区陈蔡群主要地质特征及其构造演化探讨[J].浙江地质, 1994, (1):15-29. http://www.cqvip.com/QK/83464A/199401/3001299207.html

    [95]

    孔祥生, 李志飞, 冯长根, 等.浙江陈蔡地区前寒武纪地质(前寒武纪地质第7号)[M].北京:地质出版社, 1995.

    [96]

    程海.浙西北晚元古代早期碰撞造山带的初步研究[J].地质论评, 1991, 37(3):203-213. http://www.oalib.com/paper/4888365

    [97]

    程海.浙西北晚元古代岛弧火山岩的地球化学研究[J].地球化学, 1993, (1):18-27. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX601.005.htm

    [98]

    Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic WuyiYunkai orogeny, southeastern South China:New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6):772-793. http://gsabulletin.gsapubs.org/content/122/5-6/772.abstract

    [99]

    胡艳华, 顾明光, 徐岩, 等.浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义[J].地质通报, 2011, 30(11):1661-1670. doi: 10.3969/j.issn.1671-2552.2011.11.002 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20111102&flag=1

    [100]

    赵国春, 孙德有, 贺同兴.陈蔡群构造变形特征及变形时代讨论[J].浙江地质, 1994, (1):38-46. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201111003.htm

    [101]

    赵国春, 孙德有.浙西南陈蔡群变质阶段划分及变质作用p-TD轨变研究[J].吉林大学学报, 1994, (3):246-253. https://www.wenkuxiazai.com/doc/7bbf447902768e9951e738b9.html

    [102]

    Zhao G, Cawood P A. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 1999, 299(4):309-339. doi: 10.2475/ajs.299.4.309

    [103]

    Zhang J, Li J Y, Xiao W X, et al. Multistage Deformation in the Northeastern Segment of the Jiangshao Fault (Suture) Belt:Constraints for the Relationship between the Yangtze Plate and the Cathaysia Old Land[J]. Acta Geologica Sinica, 2013, 87(4):948-978. doi: 10.1111/acgs.2013.87.issue-4

    [104]

    高林志, 丁孝忠, 刘燕学, 等.江山-绍兴断裂带陈蔡岩群片麻岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质通报, 2014, 33(5):641-648. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20140505&flag=1

    [105]

    Wang D, Zheng J, Ma Q, et al. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China[J]. Lithos, 2013, 175:124-145. http://www.sciencedirect.com/science/article/pii/S0024493713001412

    [106]

    Xiao W, He H. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China)[J]. GSA Bulletin, 2005, 117(7/8):945-961. http://bulletin.geoscienceworld.org/content/117/7-8/945

    [107]

    Zhou X, Zhu Y. Late Proterozoic colisional orogen and geosuture in Southeastern China:Petrological evidence[J]. Acta Geochimica, 1993, 12(3):239-251. http://link.springer.com/article/10.1007/BF02843363

    [108]

    Zhang J, Qu J F, Zhao H, et al. Paleozoic to Mesozoic deformation of eastern Cathaysia, a case study of Chencai Complex, Zhejiang Province, eastern China and its tectonic implications[J]. GSA Bulletin, 2018(accepted). https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/130/1-2/114/353730/paleozoic-to-mesozoic-deformation-of-eastern

  • 加载中

(16)

计量
  • 文章访问数:  460
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2017-05-01
修回日期:  2017-06-20
刊出日期:  2018-03-25

目录