Response of the North China Craton to the Rodinia supercontinent breakup: New evidence from petrochemistry, chronology and Hf isotope of the gabbro in Xiaosongshan area of northern Helan Moun-tain
-
摘要:
华北克拉通西缘贺兰山北段小松山地区辉长岩锆石U-Pb年代学、岩石地球化学和锆石Hf同位素的研究结果表明,辉长岩的侵位结晶年龄为835.5±5.3Ma,即形成于新元古代早期,属于板内拉斑玄武岩系列岩石,总体上略富集轻稀土元素、大离子亲石元素Rb、Ba、La,略亏损高场强元素Th、Nb、Zr、Hf等;具有较高的εHf(t)值(5.83~7.87),其单阶段模式年龄tDM1为1075~1155Ma,两阶段模式年龄tDM2为1176~1289Ma。综合研究发现,辉长岩的原始岩浆起源于中元古代富集型地幔,形成于华北陆块西缘的板内伸展环境,说明华北陆块响应了Rodinia超大陆裂解,也是Rodinia超大陆的一部分。
Abstract:Zircon LA-ICP-MS U-Pb dating, petrochemistry and zircon Hf isotope study of the gabbros from Xiaoshongshan area of the North Helanshan show that the emplacement crystallization age is 835.5±5.3Ma, suggesting early Neoproterozoic. The gab-bros belong to intraplate tholeiite basalt series, and are slightly rich in LREE, rich in Rb, Ba, La, and slightly depleted in HFSE, Th, Nb, Ta, Zr and Hf; Hf isotopic data of the gabbros show high εHf(t) values (5.83~7.87), the single stage model age tDM1 is 1075~1155Ma, and the two stage model age tDM2 is 1176~1289Ma. Comprehensive studies suggest that the magma of gabbros originated from an enriched mantle in the Mesoproterozoic, and was formed in an intraplate extension setting on the western margin of the North China continental blocks. The authors thus infer that this magma event was a response of the North China continental blocks to the breakup of the Rodinia supercontinent. Therefore, it was also a part of the supercontinent.
-
Key words:
- gabbros /
- zircon U-Pb age /
- element geochemistry /
- Hf isotope /
- breakup of Rodinia /
- North China Craton /
- Neoproterozoic
-
-
图 1 华北克拉通新元古代基性岩(墙)及研究区大地构造位置(a)和地质简图(b,据参考文献①)
Figure 1.
表 1 小松山地区辉长岩主量、微量和稀土元素组成
Table 1. Major, trace elements and REE analyses of the gabbro from Xiaosongshan area
元素名称 HL-29-1 HL-29-2 HL-39-1 HL-39-2 元素名称 HL-29-1 HL-29-2 HL-39-1 HL-39-2 SiO2 47.93 47.57 46.02 46.48 Rb 27.62 24.7 37.26 54.8 TiO2 1.05 0.99 0.97 0.99 Sr 812.6 1007 305.1 393 Al2O3 17.16 16.45 17.87 14.35 Y 10.09 11.4 10.11 10.8 TFe2O3 6.33 5.74 4.81 5.71 Zr 48.03 44.0 44.12 52.6 MnO 0.1 0.1 0.07 0.09 Nb 4.553 5.25 1.889 4.53 MgO 6.36 6.37 6.63 8.34 Cs 0.668 0.61 0.261 0.41 CaO 14.05 14.83 17.21 18.16 Ba 212.6 177 520.2 598 Na2O 2.13 1.95 0.27 0.26 La 6.59 7.07 4.04 5.34 K2O 0.98 1.01 2.46 1.78 Ce 16.23 17.0 11.19 13.2 P2O5 0.09 0.08 0.06 0.03 Pr 2.381 2.34 1.874 1.94 烧失量 2.88 2.82 2.75 2.36 Nd 10.9 11.2 9.237 9.27 总计 99.06 97.91 99.12 98.55 Sm 2.737 2.58 2.554 2.48 Na2O+K2O 3.11 2.96 2.73 2.04 Eu 1.158 1.22 0.947 1.02 K2O/Na2O 0.460 0.518 9.111 6.846 Gd 2.894 2.66 2.844 2.54 Mg# 69 71 75 76 Tb 0.414 0.40 0.427 0.38 Sc 31.33 34.8 24.39 24.9 Dy 2.309 2.36 2.292 2.14 Ti 5830.3 5812.8 5712.9 5710.4 Ho 0.421 0.44 0.43 0.41 V 289.2 285 276.7 271 Er 1.033 1.08 1.033 1.03 Cr 304.1 271 37.15 28.4 Tm 0.15 0.14 0.145 0.13 Mn 849.9 845.5 720.6 715 Yb 0.795 0.82 0.844 0.83 Co 31.84 57.5 41.65 36.9 Lu 0.119 0.11 0.125 0.11 Ni 80.32 97.6 75.19 55.5 Hf 1.408 1.29 1.541 1.59 Cu 29.31 37.5 127.4 120 Ta 0.361 0.62 0.185 0.38 Zn 45.18 39.6 36.45 27.8 Pb 1.954 1.41 35.05 3.01 Ga 16.04 17.9 13.83 17.9 Th 0.657 0.65 0.312 0.46 Ge 1.497 1.45 1.56 1.52 U 0.151 0.16 0.092 0.12 注:Mg#=(Mg/40.304)/(Fe2OT3/71.844*0.8998*0.9+Mg/40.304)*100;主量元素含量单位为%,微量和稀土元素为10-6 表 2 小松山地区辉长岩LA-ICP-MS锆石U-Th-Pb分析数据
Table 2. LA-ICP-MS zircon U-Th-Pb data of the gabbro from Xiaosongshan area
测点号 232Th/10-6 238U/10-6 232Th/238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb/Ma 207Pb/235U/Ma 206Pb/238U/Ma 208Pb/232Th/Ma HL39-1 52 86 0.60 0.070 0.004 1.37 0.065 0.1384 0.002 0.04093 0.001 938±72 862±28 836±14 811±29 HL39-2 83 129 0.65 0.068 0.003 1.30 0.061 0.1383 0.002 0.04247 0.001 863±77 845±27 835±10 841±25 HL39-3 57 96 0.59 0.069 0.003 1.31 0.064 0.1379 0.002 0.04142 0.001 893±77 851±28 833±11 820±28 HL39-4 47 96 0.48 0.066 0.003 1.26 0.057 0.1383 0.002 0.04104 0.002 799±71 829±26 835±11 813±29 HL39-5 66 128 0.52 0.064 0.003 1.23 0.053 0.1383 0.002 0.04381 0.002 749±68 815±24 835±11 866±31 HL39-6 52 86 0.61 0.065 0.004 1.24 0.071 0.1389 0.002 0.04202 0.002 784±96 820±32 838±12 832±30 HL39-7 35 60 0.58 0.066 0.004 1.25 0.073 0.1390 0.002 0.04617 0.002 814±93 824±33 839±14 912±36 HL39-8 60 92 0.65 0.067 0.003 1.27 0.060 0.1375 0.002 0.04312 0.002 837±75 834±27 831±11 853±32 HL39-9 87 176 0.49 0.070 0.003 1.34 0.049 0.1386 0.002 0.04306 0.001 924±54 864±21 837±10 852±29 HL39-10 33.0 67 0.49 0.067 0.004 1.27 0.082 0.1379 0.002 0.04201 0.002 840±107 833±37 833±13 832±42 HL39-11 29.9 69 0.43 0.071 0.004 1.35 0.073 0.1379 0.002 0.04262 0.002 953±84 869±32 833±13 844±43 HL39-12 38 66 0.57 0.071 0.004 1.34 0.075 0.1382 0.003 0.04408 0.002 966±81 865±3 834±16 872±41 HL39-13 59 89 0.67 0.065 0.003 1.28 0.056 0.1384 0.002 0.03951 0.001 780±71 809±26 835±12 783±26 HL39-14 25.9 50 0.51 0.069 0.004 1.30 0.076 0.1391 0.003 0.04644 0.002 898±86 845±33 840±16 917±43 HL39-15 47 96 0.49 0.069 0.004 1.33 0.067 0.1386 0.002 0.04214 0.002 911±78 858±29 837±2 834±37 HL39-16 38 72 0.52 0.070 0.004 1.32 0.067 0.1386 0.002 0.04146 0.002 940±76 856±29 836±13 821±36 HL39-17 20.0 44 0.45 0.073 0.005 1.36 0.085 0.1391 0.003 0.04391 0.002 1024±93 873±37 839±16 869±45 HL39-18 113 182 0.62 0.069 0.002 1.32 0.046 0.1385 0.002 0.03937 0.001 894±51 852±20 836±10 780±23 HL39-19 28.8 77 0.38 0.067 0.003 1.29 0.067 0.1387 0.002 0.04298 0.002 834±81 840±30 837±12 851±39 HL39-20 32.0 58 0.55 0.070 0.004 1.32 0.069 0.1382 0.002 0.04174 0.002 919±83 853+30 835±12 826±38 表 3 小松山地区辉长岩锆石Hf同位素组成
Table 3. Zircon Hf isotopic composition of the gabbro from Xiaosongshan area
样品测点号 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ εHf(0) εHf(t) tDM1 tDM2 HL39-01 0.282450 0.000010 0.000709 0.000002 0.034272 0.000238 -11.38 6.69 1124 1241 HL39-02 0.282447 0.000009 0.000615 0.000000 0.030014 0.000239 -11.50 6.61 1126 1246 HL39-03 0.282431 0.000009 0.000440 0.000007 0.020664 0.000224 -12.05 6.17 1142 1270 HL39-04 0.282426 0.000011 0.000331 0.000004 0.015585 0.000125 -12.25 6.03 1147 1278 HL39-05 0.282439 0.000009 0.000524 0.000002 0.026297 0.000296 -11.78 6.38 1135 1258 HL39-06 0.282478 0.000010 0.000348 0.000006 0.017540 0.000433 -10.40 7.87 1075 1176 HL39-07 0.282456 0.000011 0.000581 0.000001 0.030586 0.000154 -11.18 6.96 1113 1227 HL39-08 0.282458 0.000010 0.000435 0.000003 0.019118 0.000270 -11.11 7.11 1106 1218 HL39-09 0.282428 0.000010 0.000299 0.000002 0.015063 0.000206 -12.17 6.12 1143 1273 HL39-10 0.282437 0.000010 0.000360 0.000001 0.016955 0.000087 -11.84 6.42 1132 1257 HL39-11 0.282427 0.000011 0.000278 0.000004 0.012570 0.000168 -12.20 6.10 1144 1274 HL39-12 0.282421 0.000009 0.000361 0.000005 0.016913 0.000369 -12.43 5.83 1155 1289 HL39-13 0.282467 0.000011 0.000553 0.000002 0.026382 0.000133 -10.77 7.38 1096 1203 HL39-14 0.282431 0.000010 0.000355 0.000001 0.016683 0.000147 -12.07 6.19 1141 1269 HL39-15 0.282434 0.000009 0.000293 0.000002 0.013357 0.000060 -11.94 6.36 1134 1260 注:表中锆石Hf同位素组成的计算参数为:176Lu衰变常数λ=l.865×l0-11a-1; 球粒陨石和亏损地幔的176Lu/177Hf、176Hf/177Hf分别为0.0332、0.282772与0.0384、0.28325;铁镁质下地壳的fLu/Hf=0.34;tDM1、tDM2单位为Ma; t为锆石的形成年龄(t=835Ma) -
[1] Li X H, Li W X, Li Z X, et al. 850~790Ma bimodal volcanic and intrusive rocks in northern Zhe jiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102:341-357. doi: 10.1016/j.lithos.2007.04.007
[2] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in So-uth China:Constraints from SHRIMP U-Pb zircon age, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrain Research, 2009, 174:117-128. doi: 10.1016/j.precamres.2009.07.004 https://www.sciencedirect.com/science/article/pii/S0301926809001405
[3] Ye M F, Li X H, Li W X, et al. SHRIMP U-Pb zircon geochornological and geochemical evidence for early NeoPorteorzoic Sibaoan magmafic arc along the southeastem margin of Yangtze Block[J]. Gond-wana Research, 2007, 12:144-156. doi: 10.1016/j.gr.2006.09.001
[4] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia:Did it start with a mantle plu-me beneath South China[J]. Earth Planetary Science Letter, 1999, 173:171-181. doi: 10.1016/S0012-821X(99)00240-X http://cn.bing.com/academic/profile?id=7fe16b719ad6f7bf0a4f5f408e05d557&encoded=0&v=paper_preview&mkt=zh-cn
[5] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:Evidence for a mantle superplume that broke-up Rodinia[J]. Precambrain Research, 2003, 2:85-109. http://cn.bing.com/academic/profile?id=f37b2e324eb8eddd96446f3e3d501681&encoded=0&v=paper_preview&mkt=zh-cn
[6] 林广春, 李献华, 李武显.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义[J].中国科学(地球科学), 2006, 36:630-645. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200607004
[7] Chen Y, Xu B, Zhan S, et al. First mid-Neoproterozoic paleomag-netic results from the Tarim Basin(NWChina) and their geodynamicimplications[J]. Precambrian Research, 2004, 133:271-281. doi: 10.1016/j.precamres.2004.05.002
[8] Zhang C L, Li Z X, Li X H, et al. Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, northwest China:Age, geochemistry and implications for the rifting of Rodinia[J]. Int. Gondwana Research, 2006, 48:112-128. http://cn.bing.com/academic/profile?id=cfa9a0c4b8c4f32637dcf57ee7991c8e&encoded=0&v=paper_preview&mkt=zh-cn
[9] Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for Precambrianevolution of the Tarim Platform andsurroungdings[J]. Precambrian Research, 2008, 160:94-107. doi: 10.1016/j.precamres.2007.04.025
[10] 李献华, 李正祥, 周汉文, 等.川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义[J].中国科学(地球科学), 2002, 32(增刊):60-68. http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=zgkx-cd&yearIssue=2002_z1
[11] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 51:79-100. http://cn.bing.com/academic/profile?id=1cf90af6a869931026c4a6f8555e13ad&encoded=0&v=paper_preview&mkt=zh-cn
[12] Zhou J B, Li X H, Ge W, et al. Age and origin of middle Neopro-terozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia[J]. Gond. Res., 2007, 12:184-197. doi: 10.1016/j.gr.2006.10.011 http://cn.bing.com/academic/profile?id=f9c1ea41c4fe3014025cfa0a21d5b008&encoded=0&v=paper_preview&mkt=zh-cn
[13] Zhang C L, Ye H M, Wang A G, et al. Geochemistry of the Neoproterozoic diabase and basalt in South of Tarim Plate:Evidence For the Neoproterozoic Breakup of the Rodinia super-continent in south of Tarim[J].Acta Petrologica Sinica, 2004, 20(3):473-482. http://cn.bing.com/academic/profile?id=cc0d8dd4ec9369f34d106a3968f35cec&encoded=0&v=paper_preview&mkt=zh-cn
[14] Zhu W B, Zheng B H, Shu L S, et al. Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla maficdykes:Constrains on the Neoproterozoic continental breakup inthe Tarim Block, northwest China[J]. Journal of Asian Earth Sciences, 2011, 2:791-804.
[15] Shu L S, Faure M, Yu J H, et al. Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011, 87:263-276. http://cn.bing.com/academic/profile?id=9259e238649252d0528a71a1fbe27be4&encoded=0&v=paper_preview&mkt=zh-cn
[16] 崔晓庄.川西峨边地区金口河辉绿岩脉SHRIMP锆石U-Pb年龄及其对Rodinia裂解的启示[J].地质通报, 2012, 31(7):1132-1140. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20120713&flag=1
[17] 李献华, 李正祥, 周汉文等.川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义[J].中国科学(地球科学), 2003, 32:62-70. http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=zgkx-cd&yearIssue=2002_z1
[18] 张传林, 叶海敏, 王爱国, 等.塔里木西南缘新元古代辉绿岩及玄武岩的地球化学特征:新元古代超大陆(Rodinia)裂解的证据[J].岩石学报, 2004, 20(3):442-484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403011.htm
[19] 胡建, 邱检生, 王汝成, 等.新元古代Rodinia超大陆裂解事件在扬子北东缘的最初响应:东海片麻状碱性花岗岩的锆石U-Pb年代学及Nd同位素制约[J].岩石学报, 2007, 6:107-119. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200706008&dbname=CJFD&dbcode=CJFQ
[20] 王清海, 杨德彬, 许文良.华北陆块东南缘新元古代基性岩浆活动:徐淮地区辉绿岩床群岩石地球化学、年代学和Hf同位素证据[J].中国科学(地球科学), 2011, 6:796-815. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201106007&dbname=CJFD&dbcode=CJFQ
[21] Peng P, Bleeker W, Ernst R E, et al. U-Pb baddeleyite ages, distribution andgeochemistry of 925Ma mafic dykes and 900Ma sills in the NorthChina craton:evidencefor a Neoproterozoic mantle plume[J]. Lithos, 2011, 127:210-221. doi: 10.1016/j.lithos.2011.08.018
[22] Peng P, Zhai M G, Richard E, et al. A 1.78Ga Large Igneous Province in the North China Craton:the Xiong'er Volcanic Province and the North China Dyke Swarm[J].Lithos, 2007, 3:260-280. http://cn.bing.com/academic/profile?id=b960da35aff2a2971530bac93c7bc50d&encoded=0&v=paper_preview&mkt=zh-cn
[23] Peng P, Zhai M G, Li Z, et al. Neoproterozoic (~820Ma)mafic dyke swarms in the North China craton: implication for a conjoint tothe Rodinia supercontinent[C]//Abstracts, 13th Gondwana Conference, Dali, China, 2008: 160-161.
[24] Liu S, Zou H B, Hu R Z, et al. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton:petrogenesis and tectonic implications[J].Geochemical Journal, 2006, 40:181-195. doi: 10.2343/geochemj.40.181 http://cn.bing.com/academic/profile?id=f8c610ce144e11279db1aac384d00535&encoded=0&v=paper_preview&mkt=zh-cn
[25] Liu S, Hu R Z, Gao S, et al. U-Pb zircon age, geochemical and SrNd isotopic data asconstraints on the petrogenesis and emplacement time of the Precambrian mafic dykes warms in the North China Craton (NCC)[J]. Lithos, 2012, 140/141:38-52. doi: 10.1016/j.lithos.2012.01.002
[26] 郑永飞.新元古代超大陆构型中华南的位置[J].科学通报, 2004, 8:3-5. http://www.cqvip.com/QK/94252X/2004008/15675708.html
[27] Zhai M G, Shao J, Hao J, et al. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia[J].Gondwana Research, 2003, 6:171-183. doi: 10.1016/S1342-937X(05)70968-0 http://cn.bing.com/academic/profile?id=67e9ed4c6dcf0d08498a25889acfb654&encoded=0&v=paper_preview&mkt=zh-cn
[28] Shao J A, Zhai M G, Zhang L G, et al. Identification of five stages of dike swarms in the Shanxi-Hebei-Inner Mongolia border area and itstectonic implications[J]. Acta Geology Sinica, 2004, 78:320-330.
[29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and traceelements of anhydrousminerals by LA-ICP-MS without applying aninternal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004 http://cn.bing.com/academic/profile?id=f10fa454267bcd9d2c140163950f1005&encoded=0&v=paper_preview&mkt=zh-cn
[30] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite inter-actions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements inzircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082 https://academic.oup.com/petrology/article/51/1-2/537/1463381
[31] Segal H L, Platzner T. Accurate isotope ratio measurements of yt-terbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure[J]. Journal of Analytical Atomic Spectrometry, 2003, 18:1217-1223. doi: 10.1039/b307016f
[32] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27:1391-1399. doi: 10.1039/c2ja30078h http://cn.bing.com/academic/profile?id=88279e00088d51dde2c9c0e5fcaf1652&encoded=0&v=paper_preview&mkt=zh-cn
[33] Wu Y B, Zheng Y F. Genesis of zircon and its constranints oninterpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49:1554-1569. doi: 10.1007/BF03184122 https://link.springer.com/article/10.1007%2FBF03184122
[34] 彭澎, 翟明国.华北陆块前寒武纪两次重大地质事件的特征和性质[J].地球科学进展, 2002, 17(6):818-825. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200206004.htm
[35] 陆松年, 李怀坤, 陈志宏, 等.新元古时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘, 2004, 11(2):515-523. http://www.cqvip.com/QK/98600X/2004002/9517565.html
[36] Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Asian Earth Science, 2003, 22:383-397. doi: 10.1016/S1367-9120(03)00071-3 http://cn.bing.com/academic/profile?id=90b2c3adf7285e995b29b56617997a2f&encoded=0&v=paper_preview&mkt=zh-cn
[37] Liu Y Q, Gao L Z, Liu Y X, et al. Zircon U-Pb Dating for the Earliest Neoproterozoic Mafic Magmatism in the Southern Margin of the North China Block[J].Chinese Science Bulletin, 2005, 51:2375-2382. http://cn.bing.com/academic/profile?id=a89658087466d5cda33368eee83576f7&encoded=0&v=paper_preview&mkt=zh-cn
[38] Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the late Archean and its final amalgamation at 1.8 Ga:Some speculation on its position within a global Paleoproterozoic Supercontinent[J]. Gonddwana Research, 2002, 5:85-94. doi: 10.1016/S1342-937X(05)70892-3 http://cn.bing.com/academic/profile?id=08bf2e6b6df710c48c08a253ea97f9be&encoded=0&v=paper_preview&mkt=zh-cn
[39] Zhai M G, Liu W J. Palaeoproterozoic tectonic history of the North China Craton:A review[J]. Precambrian Research, 2003, 122:183-199. doi: 10.1016/S0301-9268(02)00211-5 http://cn.bing.com/academic/profile?id=12cfea93d43d4246393ca34ba42698ab&encoded=0&v=paper_preview&mkt=zh-cn
[40] Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geololy Review, 1998, 40:706-721. doi: 10.1080/00206819809465233
[41] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and p-t path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107:45-73. doi: 10.1016/S0301-9268(00)00154-6 https://www.sciencedirect.com/science/article/pii/S0301926800001546
[42] Zhao G C, Sun M, Wilde S A, et al. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records inthe North China Craton[J]. Gonddwana Research, 2003, 6:417-434. doi: 10.1016/S1342-937X(05)70996-5
[43] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton:Impli-cations for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 2000, 103:55-88. doi: 10.1016/S0301-9268(00)00076-0 https://www.sciencedirect.com/science/article/pii/S0301926800000760
[44] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J].Precambrian Research, 2005, 1367:172-202. http://cn.bing.com/academic/profile?id=04ac497de3177bf66001f321ac34e55c&encoded=0&v=paper_preview&mkt=zh-cn
[45] Zhao G C, He Y H, Sun M, et al. The Xiong'er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Meso-proterozoic Columbia Supercontinent[J].Gondwana Research, 2009, 16:170-181. doi: 10.1016/j.gr.2009.02.004 https://www.researchgate.net/publication/223732013_The_Xiong%27er_volcanic_belt_at_the_southern_margin_of_the_North_China_Craton_Petrographic_and_geochemical_evidence_for_its_outboard_position_in_the_Paleo-Mesoproterozoic_Columbia_Supercontinent
[46] He Y H, Zhao G C, Sun M, Han Y, et al. Petrogenesis and tecton-ic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton:constraints from bulk-rock geochemistry and Sr-Nd isotopic composition[J]. Lithos, 2010, 114:186-199. doi: 10.1016/j.lithos.2009.08.008
[47] 黄喜峰, 钱壮志, 孙保平, 等.贺兰山小松山地区逆冲推覆构造特征及演化[J].西北大学学报, 2011, 41(2):273-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201102019
[48] LeRoex A P, Dick H J, Reid A M, et al. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple junction and 11° east[J]. J. Pet-rol., 1983, 24:267-318. doi: 10.1093/petrology/24.3.267 http://cn.bing.com/academic/profile?id=7c5d233d607cdaf816c2e1c4775edb2c&encoded=0&v=paper_preview&mkt=zh-cn
[49] Condie K C. Sources of Proterozoic mafic dykes warms:Constraints from Th/Ta and La/Yb ratios[J]. Precambrian Research, 1997, 81:3-14. doi: 10.1016/S0301-9268(96)00020-4 https://www.sciencedirect.com/science/article/pii/S0301926896000204
[50] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China:Insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61:237-269. doi: 10.1016/S0024-4937(02)00082-8 http://cn.bing.com/academic/profile?id=c097aa188f06ce2fa75dc423db446c4e&encoded=0&v=paper_preview&mkt=zh-cn
[51] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23:185-220. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology/links/55cead3708aee19936fc5d6b.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
[52] Macdonald R, Rogers N W. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift[J]. East Africa Journal of Petrology, 2001, 42:877-900.
[53] 姜常义, 贾承造, 李良辰, 等.新疆麻扎尔塔格地区铁富集型高镁岩浆源区[J].地质学报, 2004, 78(6):771-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200406007
[54] 郑海飞.微量元素比值研究岩浆源区成分的可靠性:玄武岩熔融实验研究[J].矿物学报, 1998, 18(4):541-545. https://www.wenkuxiazai.com/doc/e32987e50722192e4436f604.html
[55] Rollison H R. 岩石地球化学[M]. 杨学明(译). 合肥: 中国科学技术大学出版社, 2000.
[56] Pearce J A, Norry M J. Petrologenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69:33-47. doi: 10.1007/BF00375192 http://cn.bing.com/academic/profile?id=06d19168e943071e4739508ae0f042bc&encoded=0&v=paper_preview&mkt=zh-cn
[57] 汪云亮, 张成江, 修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报. 2001, 17(3):413-421. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200103008&dbname=CJFD&dbcode=CJFQ
[58] Zhang C L, Li Z X, Li X H, et al.Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, northwest China:Age, geochemistry and implications for the rifting of Rodinia[J]. International Geololy Review, 2006, 48:112-128. doi: 10.2747/0020-6814.48.2.112 http://cn.bing.com/academic/profile?id=cfa9a0c4b8c4f32637dcf57ee7991c8e&encoded=0&v=paper_preview&mkt=zh-cn
[59] 陆松年, 相振群, 李怀坤, 等.华北克拉通对罗迪尼亚超大陆事件的响应——GOSEN连接假设[J].地质学报, 2012, 9:70-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe201209008&dbname=CJFD&dbcode=CJFQ
① 宁夏回族自治区地质环境监测总站. 1: 25万吉兰泰幅区域地质调查报告. 2008.
-